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ABSTRACT

Semi-reducible properties of Einstein Spaces are systematically examined for any dimension n=4
and for arbitrary signature. In particular, the equations of semi-reducibility are introduced and then
solved for many special cases. The results are presented in certain series of solutions. It is also shown that
the aforementioned series are divided into two classes, each class displaying a different pattern of behav-
ior. The essential features of each pattern are discussed in detail and new solutions for n=5 are present-
ed. The Newtonian limit of the S*-subseries is also considered.

1. Introduction

The purpose of this paper is to present and classify as far as possible the locally
semi-reducible? Einstein spaces for any number of dimensions n=4. Spaces of this
particular kind have been considered in the pioneering work of Brinkmann (1924,
1925) and they include Einstein spaces that can be conformally mapped on Einstein
spaces. These solutions are non-trivial (i.e. not spaces of constant curvature) only for
n=5. De Vries (1954) has also suitably generalized these solutions. In the same line
of thought the author has also presented solutions of the vacuum field equations for
n=6. These solutions are Einstein spaces which are also V(0)-spaces® and which sat-
isfy the criterion of Kundt for gravitational waves (for the definition see

Constantopoulos 1993).
In all the above cases an intimate relation between the dimensionality of the
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underlying manifold and the «type» of the solution is suggested. Further to this point
the various constraints induced by the notion of semi-reducibility have never been
considered seriously. In order to get better insight to the situation we recall that the
(type-D) static solutions of the vacuum (subclass A and B) are of the semi-reducible
type (Kramer et al, 1980), but they can not be related, in any particular way, to the
above mentioned cases. Besides, we do not even know if these well known solutions
can be extended for n>4. In exactly the same way, the Kasner’s solutions are also
semi-reducible, but we do not know how they behave as n incrases beyond 4.
Questions of this particular type are also related to the possible values of the cosmo-
logical constant and they suggest a systematic examination of the semi-reducible
Einstein spaces for any arbitrary dimension n (n>4).

Increasing the number of dimensions to n>4 implies that the standard classifi-
cation tools can not be used any more. For example, type D, which implies two dou-
ble roots?, is meaningless now. On the other hand the new condition of semi-
reducibility introduces different types of classification, as we shall see in the sequel.
Furthermore the number of possible signatures increases rapidly with n. Thus, it is
at least desirable, to work in a way which is independent of the particular signature
although the physically interesting cases correspond to the Lorentz signature exclu-
sively.

In the light of the above this paper is organized in the following way. In section
2, we consider the g-analysis of the semi-reducible spaces and in section 3, we recon-
sider a special class of semi-reducible spaces that are very important for our analysis,
namely, the V(K)-spaces. In section 4, we present the differential equations which
prescribe the semi-reducible Einstein spaces for any n=4. To the best of our knowl-
edge this set of equations has never been considered, but although they look tough
they give us plenty of information about their solutions. In particular, our method
reduces the original system of the vacuum field equations to a new set of equations
that refer to a space V, of a lower dimension. The rest of the original set reduces
automatically to a subset of auxiliary conditions. Besides, the form of these condi-
tions enable us to rediscover in a convenient way all the solutions that are V(K)-
spaces. In particular, a new class of V(K)-spaces (K#0), which are not included in the
solutions given by De Vries is presented. These solutions have a threshold dimen-
sion 5p+4 for any p=I and they are not equivalent to the solutions given by
Brinkmann.

The net result of our analysis is that there are essentially two different classes of
solutions, which follow different patterns of behavior for n>4. According to the first
pattern, solutions exist, that can be constructed in a way, which is independent of the
dimension of the space. In particular, these solutions depend only on some of the
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details of the g-analysis under consideration and not on the particular way the
dimension of the space is partitioned among the various slices of the aforementioned
analysis. Further to this point an unexpected new type of solutions, for n>4, is pre-
sented. These solutions are said to be of the N-type and they are essentially different
from the V(K)-spaces considered previously. We conjecture that semi-reducible spaces
of the N-type and the V(K)-spaces are the only solutions that exhibit the aforemen-
tioned properties.

Last but not least in section 6 we present extensions of the Kasner’s solutions for
n>4. In addition, extensions of the type-D static solutions are treated in detail in sec-
tion 7. All these results are summarized, together with the known solutions of De
Vries and Petrov in a particularly flexible classification scheme (see table I) which can
be further elaborated in those regions, where solutions of unknown type may exist.
The special feature, of our classification scheme, is that we sharply distinguish those
sub-cases, where the Einstein space is also a V(K)-space, from those where this does
not happen. The main reason for this discrimination is that Einstein spaces which are
also V(K)-spaces are of less interest from the physical point of view®. A possible excep-
tion to this comment are the new V(K)-solutions mentioned previously the threshold

dimension of which is n=9.
2. Semi-reducible Riemannian spaces

A Riemannian space will be called semi-reducible, if to a suitably chosen coor-

dinate system, its metric ds? can be written in the form,

(1) ds? = ds? + o2 ds? +"'+G<21 dsg, (0,#cop, a#B, c=constant),
where, _
(1a) ds:‘:=giaja dx'adx)z, (a=0,1,...,q)

Here, each one of the appended metrics ds, (a=1, ..., q), depends only on the
coordinates {xa}, while the funtions o, depend only on the coordinates {xo} of
the fundamental part ds? of the above metric.

The above analysis, is called the g-analysis of the semireducible space V,
(n=3) and the terminology will be the same as in the case of the V(K)-spaces,
which are defined in section 3 and consist a special class of semi-reducible spaces.
Thus, the principal part of the above metric ds? is called the kernel of the g-analy-
sis, while the additional metrics are called appended metrics or slices of the
analysis under consideration.

In general the g-analysis considered above is not unique (Kruckovic 1957,
1961 and 1963). It also occurs that the very same metric allows more than one g-
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analysis, each one with a different ¢. However in all cases the particular g-analy-
sis implies a corresponding partition of n, l.e. of the dimension of the underly-
ing manifold. In fact, we have the condition

q
(2) n=p+3 n,
a=1
which correlates the dimension of the space n and the dimension of the kernel p to
the lenght q(p) of the semireducible analysis. It is worth noticing that in our case triv-
ial appended metrics (i.e. 1-dimensional slices of the the g-analysis) contribute to the
total length of the analysis and that they are not absorbed in the kernel®.

The above mentioned partitions prescribe the type of the g-analysis under con-
sideration, which can be represented as a sequence of arbitrary integers with some
multiplicity. For example, the sequence

1p; kys 2(ky) .14
represents a space, the semi-reducible analysis of which has a kernel of dimension p
and at least three appended metrics of dimension &, k, and k, respectively.

Although ¢ may be not unique, our conventions (see footnote 2) enable us to
define always a ¢, <n-1, which represents an invariant of the underlying space. The
g,,-analysis may not be unique but we can always prove’ that in all these cases p can
be chosen in such a way that p=p,_. or p . Thus, ifp, . #p ., the triplet (b, ., P
() 15 invariant and it can be used in all cases, providing us with a convenient clas-
sification tool. On the other hand, if p,, =p,. ... then the pair (p, g,,) is a sufficient
tool for the characterization of the aforementioned analysis.

It is worth mentioning that the g-analysis (1) becomes trivial if and only if one,
at least, of the functions o, is a constant. In this particular case, the underlying space
is reduciblei and not semi-reducible. Einstein spaces that are reducible are well known
for any dimension n=4 (Fialkow 1938). They are trivial cases of our subsequent

analysis.
3. V(K)-spaces

A special class of semi-reducible spaces are the V(K)-spaces. Many of these spaces
appear as solutions of a certain differential equation (see De Vries 1954) but their
geometric properties and their identification as a more or less special class of
Riemannian spaces, is due to Solodovnikov ( 1956).

In a V(K)-space the kernel is always a space of constant curvature, but in addi-
tion the functions o, are not arbitrary any more. In fact, they are determined by the
conditions
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(3a) Oz = — Ko g,
and
(3b) A (o, 0y) = =Ko oy, (azb)

where K is an invariant constant, characteristic of the space under consideration.
Here g;; is the fundamental tensor of the kernel of analysis (1) and®

(3¢) Ala, 0 ) = gijaioaajob.

The g-analysis of a V(K)-space which satisfies the above mentioned conditions is a K-
analysis. However, it is worth noticing that although every K-analysis of a I/(K)-space
is necessarily a g-analysis, the converse is not in general true.

It is essential for our analysis to notice that the solutions of Brinkmann and De
Vries, mentioned in our introduction, are V(K)-spaces. Furthermore, the solutions
presented by the author (Constantopoulos 1993) are also V(0)-spaces’. However, the
important point is that the aforementioned cases do not exhaust the V(K)-spaces,
which are Einstein spaces too.

4. Semi-reducible Einstein spaces

We consider the general Einstein space E,, which can be regarded as a solution
of the vacuum field equations in the presence of a cosmological term. The condition
that this particular solution is of the semi-reducible form (1) leads after some algebra

to the following set of equations,

q
R
(4a) RO = R 40 1 3 000,
a=1
(@)
(4b) R = R g
Y (1
R(a) R 5 q A
(4¢) il + (n~1)A0,+0,A,0,+0, Y, 0,04 (0, o).
bza
(4d) A0 = gijo;ij.

Here, R and Rf (@ represent the Ricci tensor of the kernel and of the various slices
respectlvely whlle R/n is the cosmological constant of the total space and R are the



122 I[TPAKTIKA THE AKAAHMIAY AOHNQN

scalar curvatures of the appended metrics which are, for the moment, quite arbitary.

From the above equations combining (4b) and (4c) we get that the coefficients
R@ are necessarily constants. In fact contracting equation (4b) with the metric ten-
sor 7@, we conclude that the scalar curvature of the slice V, is a function of the {x }.
On the other hand, equation (4c) demonstrates that R@ should be a function of the
{x,} and this proves our previous assertion. Now, if n,>3, the corresponding
appended metric is that of an Einstein space. For n,=2 and n,=3 our previous proof
implies that this metric is that of a space of constant curvature.

Summarizing our previous results we conclude with the following result.

Theorem 1 If an Eimnstein space is semi-reducible then each non trivial (i.e. not 1-dimen-
sional) appended metric is either that of a space of constant curvature or that of an Einstein
Space.

The significance of this theorem is obvious. It reduces the problem of finding
the semi-reducible Einstein spaces to that of finding the appropriate, in each case,
kernel and then solving, by any available method, equation (4a). In all cases, equa-
tions (4c) can be regarded as the compatibility conditions, which restrict the possible
solutions.

Using equation (2) we may recast equation (4a) in a more convenient form

namely,
0 0 g Oajj
o (R - p-DKg? ) = 3, (%0 + Kgp),
a=1 Oa
where we have replaced the cosmological constant R by the constant K through the
substitution,
(5b) R=n(n-1)K.

Equation (5a) suggests that solutions of the system of equations (4a,b) may exist
which do not depend on the n, and consequently do not depend on the dimension n of
the space. In particular, an unexpected new class of such solutions can be discovered
in the special case, where the kernel of our g-analysis is not flat and the o, are solu-
tions of the equation!?

(6) Ou,ij = 0’

where again the indices i and j refer to the kernel. From equations (6) and because
of our assumption that the kernel is not flat and not reducible, we conclude that it
admits 7<[p/2] mutually orthogonal fields of parallel null vectors (Eisenhart 1938).
This remark fixes the possible o, and g,,,,.. In all these cases g, = [#/2], where [] indi-
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cates the integer part of p/2. Furthermore, combining our previous remarks with

(4b) and (4a) we conclude that
(7) R@ = R=RO = (),

in all such cases. Hence, both equation (5a) as well as the conditions (4b) are satis-
fied, which proves our assertion.

These solutions, although very similar to V(0)-spaces, are of an essentially dif-
ferent nature and they exist only for p=4. They are said to be solutions of N-type
and they form the N-series, each member of which is completely characterized by the
values of p and ¢, where ¢=<g, .. In principle N-series should exist for any n=5.
However, the proof of our assertion depends on the existence of kernels with the
aforementioned properties, which actually exist. In particular, any four-dimension-
al solution of the vacuum field equations of general relativity which satisfies the cri-
terion of Kundt can be used as a kernel, to generate spaces of the N-type through
the solutions of equation (6) (e.g. the Peres solutions, the Takeno solution etc.).
Further to this point, for any p>4, solutions which satisfy our requirements exist
(Walker 1950) and they can be used in principle, for the construction (see also
Constantopoulos 1992). Hence, N-series of solutions exist for any p=4.

The cases p=1 and p=2 are of a special interest. Thus, for p=1 the equations
(4a) and (4b) reduce to a system of ordinary differential eqauations while the left-
hand side of equation (5a) identically vanishes. The case p=2 is more interesting. In
fact, in this particular case equation (4a), far from being trivial, is considerably sim-
plified. The reason for this simplification is that every two-dimensional space is an
Einstein space. Hence, instead of equation (4a), for p=2 we have an eqation of the
form

d nR? (xo) - 2R
(8) a§=:1 nmoo’lomij = (_(én)—_ gi(jo),

where the scalar curvature of the kernel is not a constant any more. Another special
case of considerable interest results when the kernel is flat, but the space itself is not
a V(0)-space. All these cases will be considered in detail in the sequel.

5. Solutions of the V-type

Our first task is to prove, that solutions of the set of equations (4), which are
V(K)-spaces, exist for any p and any ¢. Since K in (3a) is arbitrary it is sufficient to
replace R by K using (5b) in equations (4a, b). In this case, taking into consideration
that the kernel is necessarily a space of constant curvature and using (3a), we con-
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clude that (4a) is automatically satisfied for any p and ¢.
The compatibility conditions (4b) are more delicate. But (3a) admits a first inte-

gral of the form,
(9a) A (o) + Ko? =k = const.

where k, are artitrary constants'!. Thus substituting (9a) in (4c) and using (3a) we

conclude that
(9b) R@ = n (n-1)k,,

which proves our assertion. In fact, for any K#0 and for any £, associated with a given
solution of the equations (3a), through the first integral (9a), we have a V(K)-space
which is also a non-trivial Einstein space. The final step, namely, that of identifying
the appended metric ds,? is completely at our disposal the only restrictions being
those implied by Theorem I and the conditions (9b). This means that the n involved
in the construction are quite arbitrary, which can be also verified directly from equa-
tion (ba).

Our proof is independent of the values of p, ¢ and ¢,,,.. In fact the value of ¢,
is an intrinsic property of the V(K)-space under consideration. In some cases ¢, =
e (P)> while in other cases g, is independent of p and in addition unbounded
(compare Kruckovic 1961, Constantopoulos 1993). The question about the possible
values of ¢, is still open and it is closely related to the existence or not of solutions
of the equation (3a) which are non-trivial V(K)-spaces. However, the only fact that is
important for our analysis is that for K#0 and ¢, =p+1, V(K)-spaces exist which are
not solutions of the equation (3a) (Kruchkovic 1967). Combining this remark with
our Theorem 1, we conclude that there are two classes of Einstein spaces which are
also V(K)-spaces namely, the spaces of the V1-type which are solutions of equation
(3a) and those of the V2-type which are not. In the second case, from equation (2)
using the fact that ¢, =p+1, we find that the threshold dimension for the spaces of
the V2-type is n, =5p+4 (p=1). These solutions are essentially different from those
considered by Brinkmann and De Vries. They form a new class of Einstein spaces,
which can not be mapped conformally on other Einstein spaces (see footnote 3). The
first representative of this class, for n=9, will be given explicitly in the Appendix.

The net result of this section is: two different series of solutions of the funda-
mental equation (4a) and (4b). In the Vl-series, each solution is characterized by p
and ¢. In this case the well-known solutions of Brinkmann and De Vries are redis-
covered. The solutions of the V2-series depend only on p and they are essentially of
a new type, having different properties. In both cases the distribution of the n in (1)
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and consequently the total dimension of the resulting semi-redicible space are quite

arbitrary'?.
6. Solutions for p=1

The only solutions possible for p=1 and ¢=1, are those prescribed by Brink-
mann. In our formalism these can be rediscovered immediately from equation (3),
which is now reduced to an ordinary differential equation of the second order name-
ly, the harmonic oscillator equation. The only conditions required because of (3a)
and (3¢) are, (5b) and (9b), where now n,=n-1I. The case where p=1 and ¢=2is much
more delicate because now we have to consider simultaneously both the linearly
independent solutions of the aferementioned equation. The resulting two solutions
(depending on the sign of K) are the first of the V2-series to be considered and they
introduce a threshold dimension of n=9 as we have already explained. The details
of these solutions are indicated in the Appendix.

For p=1, R? = (, the particular sub-case prescribed by the rest of the condi-
tions (7) is immediately solvable. In this case (4a) and (4b) can be written in the form

q
(10a) 0=3 no/q,
a=1

q
(10b) 62=00,+0,0,3, n, 0,76,
b=1

where, in general, some of he n, are not equal to one!3. Now substituting in the above

set of equations the expressions,
(11) o, = G tPq,

we reduce the system of differential equations (10a) and (10b) into an algebraic set

of conditions namely,

q q
(12) Ynpl=3 np, =1
1 1

where again the n, are completely arbitrary.

If n,=1 (a=1,..., g) our results are a generalization of the well-known Kasner
solution, for any arbitrary n (see also Petrov 1946). However our analysis for an arbi-
trary set of n , some of which are different from 1, reveals new and unexpected fea-
tures. For ¢=2 and n,+n,>2, the equations (12) have either a unique non-trivial
solution, or two distinct solutions which, combined with our Theorem 1, prescribe
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the K1, K2-series of special Einstein spaces (R=0). For ¢=3, the situation is essen-
tially different because now the resulting K3-series may include members which are
reducible (e.g. if g=5 and p,=0). If we exlude this possibility, e.g. requiring that p #0
for all a=1,..., ¢, the resultint K3-series involve, for each possible combination of the
n,, an infinity of solutions. If n, <4, the corresponding slice V, is necessarily flat,
hence the appended metric is unique. In all other cases this metric is that of a spe-
cial'* but otherwise arbitrary Einstein space.

Examples of each case can be easily obtained. Fixing n,=1, we have a special K1-
series of solutions prescribed by equation (10), where

3-n 9

(13a) p; = E, ps = 1 (n=4).
Another interesting Kl-series results for n,=n,=p, where p>1I. The threshold
dimension here is =5 and each one of the solutions corresponds to an odd integer
(n=2p+1). Again our solution is prescribed by (11), where

(13b) PLo =

So far we have considered only special Einstein spaces. However, the situation
changes dramatically for a nonvanishing cosmological constant (R#0). In fact solu-
tions of the form (11) are no more possible. Following Petrov (Petrov 1946, 1969) we

)

where A and i, are arbitrary constants. Substituting in (4a) and (4c) the above solu-
tions we conclude with a set of algebraic conditions which are the analogous of equa-

introduce the solutions

(14) 0,(t) = sin}(t)tanka (;

tions (11) in the case of a non vanishing cosmological constant namely,

(15a) n(n-1)A?

R =

q
2
a=1

q
(15¢) 3 ngp2 = (-DA(1-A)

a=1

(15d) s
n_
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where 7 is the dimension of the space. These conditions generalize the results of
Petrov (Petrov 1946) in our case and they introduce the P-series in complete analo-
gy with the K-series considered previously. The crucial point here is that although
we have a non vaninshing cosmological constant R>0, the scalar curvatures of the
appended metrics systematically vanish. The case R<0, is exactly the same as before
but sin and fan are now replaced by their hyperbolic analogues.

7. Solutions for p=2

The case p=2 is rather special as we have already mentioned (see equation 5).
In particular, for p=2 and ¢=1 our original set of equations (4a) and (4c) reduces to

the equations

a ©)
(16a) R _ (n—4)R+nR Pz,
(n—2)(n=3) n(n-2)(n-3)
nR%x) - 2R
(16b) g. = —L)——— Ogi(j())

& 2n(n-2)

where again the covariant differentiation and the indices [, j refer only to the two-
dimensional kernel. The essential point here is that R is not a constant any more.
Equation (16a) has been studied in many cases and by many authors. However, from
De Vries (1954) we know, that in the above case there is only one solution, if and only
if R = R© (g). Further to this point it can be easily proved that equations (16a) and
(16b) are compatible if and only if, R (¢) satisfies the ordinary differential equation

(17) RO (0)+(n-1)RO (0)o! = % Ro'!

where the dot indicates derivatives with respect to the unknown function ¢. Equation
(17) can be immediately solved, the solution being of the form,

2R

0) — ,sln
(18) RY (6) = a0 +n(n—l)

where a is an arbitrary integration constant. Since we now know precisely the form
of the function R” (g), we can easily integrate our original equation (16a). In partic-

ular, we have

(19a) ds,? = g, di2 - - dr?,
where
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o a 3—n+ R 2
k) 8% homd)  nm-n O
and
(19c¢) o(r) =r.

Here, C is an integration constant which is very important for our analysis. In fact
using equation (16b), we conclude that C prescribes the scalar curvature of the

appended metric namely
(19d) RM = (n~2)(n-3)C,

where n>3 is the total dimension of the underlying space. For n=4, C=1 and a=-2m
we have the Schwarzschild solution as this has been generalized by Kottler in the
presence of an arbitrary cosmological constant. Further to this point C can be always
normalized to the values 1 or 0, fixing the scalar curvature of the corresponding
slice to positive, negative or zero. Thus the S-series of solutions, induced by the equa-
tions (19a) to (19d) include naturally, for n=4, all the static solutions of the vacuum
of type D (Kramer et al, 1980). In order to complete the proof of our assertion it is
sufficient to notice that in (19a) the choice of the signature was quite arbitrary. Thus
readjusting the signature in all possible ways and computing g,, for each case sepa-
rately we recover (n=4) all the aforementioned solutions. Thus, we conclude with
three distinct sub-series of the S-type, S*, S~ and S° corresponding to the three pos-
sible values of the normalized constant C.

Clearly, our previous analysis does not exhaust the various possibilities even for
p=2. In particular, special solutions for p=2r (r=1) always exist, assuming only that
the kernel is flat and requiring the appropriate!® signature. In this special case the
flatness of the kernel guarantees that equation (4a) is considerably simplified to the
form of a differential equation with partial derivatives which can be easily satisfied
for ¢22. Further to this point, choosing the flat kernel and the o, in the form

(20) ds?) = 2dxdx™+! + ... + 2dx"dx?"

f
(21a) o, {5, &%) = ¢os (Z o, XS + cb), (b=1,...,k)
1

r
(21b) o, (Xr+1’_,., x2r) = cosh (Z (‘)bsxrﬂ*'cb)’ (b=l<+1,...,q)
s=1
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we have the conditions (4c) automatically satisfied while the equation (4a) reduces to

the equations
(22) Rr-i—sl,r+s2 = O,

which, because of the particular choice of the o-functions, degenerate into algebraic

conditions among the » namely

k q
(23) ) 1}, W, Opgy = b7 i Ny Wbs; Pbsy = 05
+

S= —

wheress;, s, = 1,...,7.

The resulting F-series depend on r=1 and on the particular distribution of the
n,. Solutions of this particular type exist for any n=4 but only the first member of
this F-series is known for n=4 and r=1 (Petrov 1967). In our case and for r=1 an
unbounded number of solutions can be generated by the following prescription,

(24) q=2k, 0, = 0y, 0y = 04, (b=1,...K)

Cu 7 C (P=a).
This particular class of solutions forms the F,-series the properties of which, in an

abuse of language, imitate the properties of the V-series.

7. Conclusions

Our analysis demonstrates explicitly, that the solutions of the Einstein equation
in the vacuum, which have the extra property of being semi-reducible, display two
different patterns of behavior for any n=4. However, this difference becomes trans-
parent only for dimensions n=5. Thus, solutions of the V-type and the N-type can
be constructed in a way, which is entirely independent of any distribution of the n,
and which is compatible with the dimension n. We have also shown that there are
sub-cases where this phenomenon is realized only for dimensions n=9. Further to
this point equation (5a) suggests that the V-series and the N-series are the only cases
where the aforementioned phenomenon occurs. Although arguments based on the
equation (5a) are very strong, a rigorous proof of this conjecture is desirable. The
rest of the solution given in this paper is classified into series of solutions and the
members of all these series depend explicitly on the distribution of the n,. The solu-
tions presented here, which belong to the same series, have certain properties in
common. However, the essential point is that they all have a representative, or cer-
tain (degenerate) representatives at dimension 4. For both patterns and for suffi-
ciently large dimensions the structure of the slices is more or less irrelevant assum-
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ing only that it satisfies the requirements of our Theorem 1. The essentials of each
type are summarized, in a compact form in table I, where the first column indicates
the value of the cosmological constant possible, for the particular type under con-
sideration.

Solutions with a non-flat kernel for p=2 and ¢>1 exist. This can be proved indi-
rectly in the following way. We may start with a 6-dimensional member of the S*-
series. Then we may replace the arbitrary so far slice of this space by the Kottler solu-
tion (this particular choice is permitted by Theorem I). Now, rearranging the vari-
ous terms we end with a new g-analysis which is of the type {2, 2(1), 2} and this
proves our assertion. However, this is nothing more than a special S*-solution writ-
ten in a different form. Thus the possibility of new series of solution for p=2 and ¢>1
is still open and this is indicated by the black region of table I. In the same way the
shaded area indicates the range of our ignorance as far as the values of ¢, are con-
cerned.

Among the extensions presented here, the extension of the Schwarzschild solu-
tion has some interest. According to Theorem 1 from n=4 to n=5 the extension is
unique!® but this additional dimension, however curved it may be, leads to an
unphysical Newtonian limit. This is derived from equation (19b) for R=0, where
now a=-2m. In fact, the Newtonian potential derived from this expression behaves
like 7. For n=5 this behavior is quite unphysical as we have already mentioned. If
n=6 the addition of any spatial dimension has the same effect, destroying the
Newtonian limit of the theory. Now however, the extension is not any more unique
and our previous argument may not be valid any more.
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Appendix

We present the first member of the V2-series (Le. p=1, g, =2 and n=9). This par-
ticular solution is of the form

(Al) ds? = edx? + 0%ds} + s3ds?

where ¢==+1 and x is a general variable that may be an angle, a cartesian coordinate
or even time. Here, 0, and 0, are the solutions of (3a) subject to the condition (3b).

In our case (p=1) equation (3a) is reduced to
(A2) 0 + eKo =0

There are two distinct cases for the solutions of (A2) namely,
I) K=+eA?, x=6, 0,=cos(A0), 0,=sin(A6), k,=k,=+€A*
1) K = -)2, x=u, 0,=ch(Au), o,=sh(Au), k,=-€A?, k,=€)?,
where k; and k, are the constants that appear in equation (9a). The appended met-

rics are of the general form
(A3) ds? = ggz;adxiadxia, (@=1,2), (i j, = Lwsd)-

Now, according to Theorem 1, both the appended metrics should be non-trivial
Einstein spaces, otherwise the solution (Al) degenerates either to one of the solutions
prescribed by De Vries or to a space of constant curvature. The cosnelogical con-
stants of the aforementioned metrics are given by equation (9b). Now, the minimal
choice, as indicated by (A3), is n,=n,=4, which introducesn=9 as a threshold dimen-
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sion. It is worth noticing that this is nof a unique construction, because of the arbi-
trariness implicit in the choice of the appended metrics. This particular feature is
characteristic of the V2-series.

Table I
C.C | Kernel [p] | Length [q] Qs Type/Series Comments
R 1 1 2 V1 Brinkmann Solutions
R 1 2 2 V2 New Solutions
0 1 =2 K1, K2 Extension of Kasner’s
Solutions
0 1 23 0o K3 Extension of Kasner’s
General Solution
R 1 =2 = P1, P2 Extension of Petrov’s
Solutions
R 1 23 o0 P3 Extension of Petrov’s
Solutions
R 2 1 1 St Extension of the Type D
S 8P Static Solutions
R 2 =92 =2
R =2 V1 De Vries Solutions
R =2 V2 New Solutions
0 2r =2 oo F New Solutions
0 =4 =910 [p/2] N New Solutions
List of the various solutions
[TEPIAHYH
‘Hwavayoryysor ydpot Einstein pe n=4 Sordoe
Ot iBiotres MuavaywypoTnTag 16V ywewy Einstein éEeralovton sustnmarind v xade
Sustacn n=4 xal Y omowdimoTte €idog signature. Eiixotepa eloayovran of ebiomoerg

’ \ \ ’ 2 ’ \ / \
MMAVAYWYUROTNTAG XAk GTT) GUVEYEL ETLAUOVTAL O Slagopeg eidiee Tepmtaoels. Ta

>

ATIOTE,

14 \ L4 ! N
Aegpata OV TIPoXUTTOUY Tapouatalovion oav axohoudiec Maewy. "AnodexvieTal

o or ¢~ ~ \ ~ \ , .
0Tt 0Aeg 0L Augelg Pmopolv va ywetatlolv gt Slo Sapopetins xatnyoptes, M xabe wia amo

\ ¢~ 5 ~ o N & 7 &
TIC OTOlEG AMOTEASL €V SLOPOPETING «UTOSELYMa TUUTEQID0RaS». Ta olotwdn yapa-
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\ K ~ ~ a3 ~ ~
RTNPLOTIXG AUTOV TWV GU0 Xatyoptwy culnroivrar defodtxa xal mapouaialovron véeq
’ \ Y / 2 ! \ X ’ ¢/ ~ ’ \ 9 / \
Ngeig yian=5. "Eéeralerar eniamg xou 10 Neutivero Spto 1w Mgewy mod avixouy oty

St Uroaxohoudic Nisewy.

AaBow oy Moyov 0 "Axadnpainog x. T'edpyrog Kovromoudog, eine war éEnc:
Ot y@por tovg omoloug pereta 6 x. Kwvatavrémoudog elvon yevixelsoeis yvomatav
Ywpwy, 6mtwg To0 yweou Minkowski e Eidixtie Tyetixotnrog, Gnou 10 aroyeimdes

wixog ds Stveton amo Tov TUTO
ds? = dx2+dy?+dz>-c?d¢? (1)

"Edo dx, dy, dz et puxpés drootdsei tob auvifious yweou 3 Suatdaewy xai dt evas puepd
dasTnpa yeovou (4n diaraan). ‘0 imog Tob Siver T0 atoryeides o ds? eivas yevixeuam
oe 4 Susracer tou [Tubayopeiov Bewpruartog xai ovopaleton «ueTpxn» Tob YWeou.
Ty Cevoen) Zyeninotnta 1) petpmn yivetou
4 4
ds? =% ) gdxdx; 2)
i=1j=1
omou g, el GUVRPTTTELS TGV X, Xy, Xy X, X0 GT0TENODY 0 «etpind TovuaTiy. O
8; el Maee Tav Sapopinay éEiatoewy 00 Einstein
Gy ;= xT, 3)
&mou 6 Gy el 6 tavuaTe ToU Einstein, ol mepiéyer o 8; xol TP@TEG XU CEUTEPES
mapaywyous Ty g, ‘H T050TNG A xohelton «xospohoyen atadepar» xal o T; amoTeENEL
TOV TAVUGTY) «EVEPYELNG-0pIATIC» XOU YapokTNELLeEL TNV XaTavopd) T1G UANG Xou EVepYelag
a0 yweo. ‘H x eivar wa otabeps dvodoyiag.
"Av Tij=0 TavToD, $XT0¢ Ao Evar anpelo, o Aon T eenoewg (3) (ue A=0)
etvau ) Ao 700 Schwarzschild

2
ds? = Tdr—a + 12 (d0%+sin0 dg?) - (1- 2 de? )

r

ToU TopaTaver o ToMxeq ouvteTaypéves i «ehav 6mn». H mosérng a el
axTiva TG ehaviig oG,

‘0 %. Kwvotavtomoudog, y(enotromoimvtas xprtnpla NaveywYkotnTas, botxe 0o

anopn Noeg g aonoeng (3) pe TiJ:O:

2
ds? = -9 4 12(d62+sinh% dg?) - (2 - 1) de* (5)

r
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xod ds? = rdr? + 12 (d02+d¢?) - % de? (6)

o b / ’ o [ 3 A ¥ A ’ 7 ’

Opwg dpydtepa Samictose 6 of Mot alteg Aoy 1oy Yoot Kot npoyw-

\ ’ \ / / < ~ \ < ’ \ 8/ \ d 2

onoe ¢ Noewg e mepaadrepeg daatases. Of ydpor (Snhadh of Tumor o Sivouy 7o ds?)
ol TpoxUTTOUY &mo Ty Eklowan (3) Srav T =0, Aeyovrar «ympot Einsteiny.

Ot y@por Einstein tolg omotoug efetaler 0 x. Kwvortavromouog evan g mopgne

ds? = dsy? + 0,2 ds? +...+cq2 dsq2 (7

dmou dsy? evor 10 «Bepehddes Ty Thg peTpuior xal ehar p SlaaTdoEwy, V6 T8
dslﬁ...dsqg VoL «TPOTUPTNIEVES HETPIXESH BIGTATEWY 1, ... n,. “Orav ot suvaptoelg
0y...0 bapTvTar povo Gmo Tg p ouvteTaypéves To0 fepehwdoug TuMpatog TG
etone, ToTe 0 Yopoe (7) Myetar «uavaymytroo» Eve 6Tay o, ...0. e otadepte 6
peTpne e YeTon <chpaaorydyy ey 0
YOPOC AVTOG NEYETAL KAVAYWYULOGY.
Yo mapaderypa 6 y@pog Schwarzschild eivas fuavaydypos 1 deog e Oepehiddeg
T
o o2
d = 4 (8)

1-2
r

pe p=1 (Gnhadn pia povo Bepehiwdn petabhnmi, Ty 1), vid of ydpot

ds? =d6? + sin%0 d* xa ds} = de? 9)
elvan mposapTIUEVOL Y Beot SlacThgewy N =2 xal n,=1 avuistoiywe. "Edo eivou
o =1?,03=-(1-2) (10)

Srhadn v g, 6, e suvrpTATELS Wvoy Tiig baoikic peTabhnTiic T

‘0 x. Kwvoravtonovhog 6pnxe modhee véee NHAAYOYes MNaee Tov eEigwoewy
Einstein, mou eite anoteholy yevixeloe, yvwatay Moewv (.. 1@y Aoewv Kasner,
Petrov xAm.) 1) elvow &vtehdde véee Mioetc.

0 Tehog Ti Epyaciag Tou xdver i ouoTpaTie) Takwbpnen Shwy Ty Noswy,
YVWTTOY %ok VEWY.

Ot Wiserg 70b 2. Kevaravrtomoulou 8w Eyouy duean douppoys ot quatms TpobANpaTa,
dev amoxheleman G va Goefouy tétoies dpapovic eic o ENloy Xl pohoa oty Bewpla
oy Umepyopliv. Eidmotepn magyow dvielfer bm bpiopéves Noe 100 x. Kovoroy-
omoulou eva y@por Cartan, mod eha: cnuavTixol Ty Bewpntien Quonen. Kata guvéneia
et hemtopepeaepn peEheTn Tav Kioewy mob Avagéeaye 0% Ty Buaitepa Yo,



