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ABSTRACT

A review of the existing failure criteria was undertaken in this paper. A compari-
son between criteria based in quadrics, that is the conical and circular-paraboloid failure
loci, was presented and the advantages and disadvantages of these criteria were outlined.
The cylindrical failure locus comes out as a special case of both these criteria.

It was shown that the Mises-Hencky criterion, represented by a cylindrical failure
locus, implies a compulsory condition for equal behaviour of the material in tension and
compression. This constraint makes the Mises criterion only of a limited value suitable
for highly ductile materials.

More important criteria are those based on a conical failure surface, which was in-
troduced by Coulomb. This criterion yields excellent results in the compression-compres-
sion zone and it is most convenient for brittle materials because of its simplicity.

The difficulties encountered by the Coulomb-Mohr criterion to confront the failure
behaviour, especially in the tension-tension zone of all materials, disappear as soon as the
failure criterion, based on an circular-paraboloid locus, is used. Since this criterion is based
on a two-parameter expression, it is a versatile one and presents a good agreement with the
results derived from any previous experimental evidence.

It was also shown that this criterion is in complete agreement with newly established
criteria, depending on the deviatoric and dilatational components of stresses which undergo
rather moderate deformations and which are based on the theory of void formation.

All these criteria are convenient for initially isotropic materials and they are repre-
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sented by surfaces of revolution about the space diagonal in the principal stress space.
If one admits a rotation of their axis of symmetry about the origin, a translation of their
initial position and some distortion of their shape he may encounter a really universal fai-
lure criterion, where anisotropy of the material could be also incorporated. These criteria
constitute the so-called tensorial failure criteria.

Then, the rotating elliptic-paraboloid type of criterion may be considered as a gen-
eralized failure criterion for all engineering materials.

INTRODUCTION

It was as early as 1904 that Huber [1] has introduced his yield or brit-
tle-fracture criterion, where he distinguished two cases, when the hydrostatic
component of stresses applied to the specimen was tensile, or compressive.
Huber’s criterion was based on the distortional component of the elastic ener-
gy, for compression, whereas for tension the criterion depended on the total
elastic energy.

Von Mises [2], and independently Schleicher [3], have introduced af-
terwards the notion of the equivalent critical yielding stress, instead of that
of simple shear k, as an arbitrary function of the hydrostatic component of
stresses. The criterion was convenient for materials, whose yielding depended
on hydrostatic tension or compression, and therefore they presented differ-
ent critical values for yielding under the different modes of loading.

A similar criterion than the Mises criterion was previously introduced
by Tresca [4] in 1864 which was based on the maximum shear stress and
proved to be convenient for mild steels.

Although from the early tests of failure of materials it has been real-
ized that the yield stress in simple tension never coincided with the yield
stress in simple compression, it was assumed, at least for the ductile metals,
where this difference was not so important, that a complete symmetry of
the yield locus exists in the tension and compression spaces. Than, Tresca’s
and Mises’ yield conditions were accepted as describing universally the pla-
stic behaviour of ductile substances [5].

In brittle materials, where the ratio of the yield stress in simple com-
pression o,, was always much different to the yield stress in simple tension
o1, it was accepted that a Mohr-Coulomb type of yield locus described the
plastic behaviour of these substances [6, 7]. Although the Mohr-Coulomb,
or internal friction, criterion fitted satisfactorily the results for nonmetallic
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geological materials, the agreement established between experimental results
and the theory may be mainly attributed to the large scatter of experimental
results and the lack of such results in the third and most critical quadrant of
the principal stress space.

Multiaxial failure criteria were historically developed to characterize
the biaxial failure of materials. They represent the maximum stress, maxi-
mum shear, maximum strain, maximum strain energy, and distortion energy
theories of failure, and may be portrayed as failure loci in a principal
stress plane. The simplest of the biaxial criteria represent polygonal failure
loci. Generalization to three dimensions is straightforward, and leads,
for the simpler criteria, to three-dimensional polygonal failure surfaces
in the principal stress space [38].

Following Tschoegl [8], failure criteria will be presented in this review,
which contain the three principal stresses in a symmetric mode. This restricts
application of the criteria to isotropic bodies and refers the corresponding
failure surfaces to the principal-stress space, as surfaces of revolution around
the space diagonal. The space diagonal 6,=6,=0,, has equal direction co-
sines £;=E,=E,=1/v3 with the positive principal stress axes.

The requirement that the surface should be open in the compressive
octant, because hydrostatic compression at moderate pressures cannot lead
to failure, restricts the choice of surfaces. We shall consider only quadrics.
This restriction leaves the cone and the circular paraboloid as the only fai-
lure surfaces with the cylinder as special case of both these surfaces. For the
two parameters defining a quadric surface we can conveniently select the
failure stress in simple tension, ¢, and in simple compression, c,.

THE QUADRIC FAILURE SURFACES

i) The Conical failure locus: This failure criterion corres-
ponds to the well-known Coulomb criterion [6, 8]:

It 4+pe = % , (1)

where ¢ and 7 are the normal and shear stresses across the plane of failure,

7, is the failure stress, and u. is the so-called coefficient of internal friction.
The Coulomb criterion is usually applied to biaxial stressing and < is

then taken as the maximum shear stress. In a triaxial state of stress the sim-
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plest modification, which involves the three principal stresses symmetri-
cally, is obtained by considering the t-stress as the octahedral shear stress
ops and the s-stress as the mean-normal stress o,,. The criterion can then
be stated as

Gps + WOnn =0y, (2)

where o, is a material constant. Eq. (2) is also known as the Drucker crite-
rion [9]. This criterion is frequently expressed in the form:

Jot 2+ Blh=oy (3)
where p=p/vVs and ocy=v3/2 o,

The failure surface in principal stress space corresponding to this cri-
terion is a cone, coaxial with the space diagonal, whose semi-angle, «, is given
by tana=p. The intersection of the cone with the ;=04 plane is shown in
Fig. 1a. The apex of the cone has coordinates cy=c,/i on the principal
stress axes. The cone intersects the positive and negative axes at o, and oy,
respectively, where o, is the failure stress in simple compression and it is
generally larger than o,. For c,,=0, the cone reduces to a cylinder and
Eq. (2) may therefore be regarded as a modification of the Huber-Mises cri-
terion, introducing into it the mean normal stress, weighted by .

It is worthwhile noting that Eq. (2) represents a linear combination of
the octahedral shear and normal stresses. Expressing p and o, in terms of
the angle 2« and the coordinates oy,=c,=c, of the apex of cone in the
principal space stress Eq. (2) takes the form:

opsCota 4 opp=0, (4)

Inserting Eqs. (2) and (4) we find

(61, —02)2+ (02 —03)? + (63 —01)* — (01 -+ 62+ 63 —30,)*tan’«=0.

This relation represents a cone coaxial with the space diagonal. It can be
readily shown that the coordinates o, of the apex of the cone and its angle
are expressed by:

- 2 OGocOot
oA = 5 ¥ Coe ~Oot ()

and
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— Goe—O,
tana=v3g —c o 6)
Goc +00t (

Then, introducing these relations into the previous one we derive for
the failure criterion the expression:

4 2
\‘/_2—_—(Goc+ Oot)Ons + (Goc —0ot) Onn = -3*°'oc Oot (7)

which may be also written as follows:

1 = 9 2
Hoerro et oauleT - el oo

02

54° 45"

Fig. 1a. The conic failure surface.
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where p=o,, expresses the hydrostatic stress and it is equal to the octahe-
dral normal stress o,, given by:

Gl+62+ Gs (9)

6%hs = —— [(01 —02)% + (03 —03)2 + (63 —01)?] (10)

Moreover, the ratio of the yield or failure stresses in simple compression o,
and in simple tension o, is expressed by:

R=—t¢ (11)

Oot

Quantity R is called the strength differential factor.

Relation (8) expresses the equation of a conical failure criterion in terms
of the o, 0,, o, principal stresses and the failure stresses o, and o, for sim-
ple tension and compression.

It can be readily shown from relations (5) and (6) that when R=1.0 and
64,=0,t the apex angle, «, of the cone becomes zero and the distance of the
apex +/3 o, becomes infinite. This means that the Coulomb-cone degenerates
into the Huber-Mises cylinder [2]. This criterion is frequently used to repre-
sent the yielding of highly ductile materials [3].

In materials failing at small deformations for which the infinitesimal
theory of elasticity is admissible, the cylindrical yield locus is associated with
the distortional strain energy. This may not be valid for materials which
undergo large deformations before failure. In this case the theory leading to
a cylindrical surface may be referred to as the octahedral shear stress theory,
as proposed by Nadai [8]. According to this theory, the material fails when
the octahedral shear stress, o, is equal to v2/3 times the failure stress in
simple tension, i.e., when

s
Ons™ -é'o'ot (12)

The o,-stress constitutes a material parameter, which characterizes the
failure behaviour.
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Introducing the octahedral shear stress, the Huber-Mises criterion may
be stated as

(61-03)% 4 (02-65)% + (05-01)*=20%; , (13)

Equation (13) represents a cylinder of radius v9/3 o, coaxial with the
stress-space diagonal. Figure 1b presents the intersection of the cylinder with
the plane of symmetry containing the c,-axis and the space diagonal. The
cylinder cuts the principal stress axes at 4-o, and the criterion assumes
that the failure stress in uniaxial tension and compression are equal. Eq. (12)
also expresses the fact that failure depends on the octahedral shear stress
alone and the octahedral normal stress o, is without influence.
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Fig. 1b. The cylindrical failure surface.
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The intersection of the failure surface with anyone of the coordinate
planes yields a failure curve representing, in the plane of the two principal
stresses, the associated failure criterion in biaxial loading. The intersection
of the cylinder with the s,=0 plane is an ellipse, whose major axis lies along
the projection of the space diagonal on the o;=0 plane.

Moreover, when 6,,=3c,; and therefore c,=0c,, we derive that tan«
1/¥/2~, which yields «,=35°15". This angle «, is the complementary angle
to the angle of the direction cosines of the space diagonal, defining the direc-
tion of the octahedral normal stress. For this critical angle the cone disposes
three tangent planes parallel to the coordinate planes o;=0,, o,=a; and
Gy=0;.

On the other hand, for %—mo the apex angle becomes a=54°45’
ot

which is the complementary to the «, and, in this case, the cone disposes
three tangent planes parallel to the principal o;-, 6,- and cz-axes. In this case

20'01;
vy

the distance of the apex of the cone from the origin becomes v3 ¢,=

This cone corresponds to totally brittle materials.
The equation for this limiting cone, with semi-angle a=54°45", becomes:

3(010; + 6503 + 6301) ’—12}) Oot +40%=0 , (14)

and the corresponding failure criterion is

2
‘;;g e O'm1=’§' Got (15)

For values of the (o, /o) -ratio corresponding to very brittle materials the
angle « tends rapidly to its limiting value of 54°45" and therefore the Coulomb
criterion is justified for all brittle materials.

The intersection of the cone with the c;=0 principal plane (and simi-
larly for the other two planes) yields:

Goc—0, 260601 |
2 3___3 oc ot _ oc! ot} =0 16

S { pc"oc"l' Oot Goc Ot (16)
It may be readily shown that this equation represents a family of ellipses
for oy [0,4<<3.0, a parabola for 6 /6;=3.0 and a family of hyperbolas
for 6y /64>3.0.
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The conic sections of this criterion for parametric values of the ratio
Goc /0ot are shown in Fig. 2.

The limiting case for which 6y /o=c yields a hyperbola, whose
equation is given by:

4
6162—‘4p60t+§cot=0 (17)
0z
A
Oot
&%f
>01
UO(

ellipses

%

-
hyperbolas

Fig. 2. Conic sections for the conic failure criterion for parametric values of R.
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Fig. 3. The hyperbolic locus derived from section of the conic failure locus and the plane
og= 0 for R—w

Fig. 3 presents the plotting of this hyperbola, which has the following char-
acteristic dimensions: i) The distance of its vertex _from the origin is V3 o,

o, and iii) its asymptotes

3

are expressed by the equations 01 =0y="3-Cot-

DT . A
N Got, 11) the tangent to the vertex is o, —}—02:—3-

il) The circular paraboloid failure locus (seeFig. 4):
The circular paraboloid failure criterion constitutes a linear combination
of a term depending on the mean normal stress and the square of the
octahedral shear stress. It is an attracting compromise among all other
criteria because it avoids the physically unlikely angular apex of the cone
in the first octant of principal stress space. The equation for an circular
paraboloid, which is coaxial with the space diagonal is
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(01—03)2 + (05—03)% + (03—0,)? = 12fd—4fv3 (0,4 02+ 03), (18)

where [ is the distance between the focus of the paraboloid and its vertex,
and d is the distance of the vertex from the origin (see Fig. 5).

It may be readily shown from the properties of the parabolas that the
distance f between any point of the parabola and its focus, which is equal
to the distance of its vertex from its directrix, is expressed by:

__Ooc” ot 1
= (19)

whereas the distance d between the vertex from the origin of the coordinates
in the stress space is given by:
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Fig. 4. The circular paraboloid failure surface.
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d = _.:GQEGL‘:_.__ 20
V3 (Goc—00t) (20)
Then, introducing these values into Eq. (18) we derive for the equation of
the paraboloid the equation:

(61—063)% + (62—03) 2 + (65—61)% 4+ 6P(Goc—00t) —260cT0t = 0 (21)
whereas the corresponding failure criterion takes the form:

2 2
s +'3‘(°'oc_"°'ot) S g GoeOot = 0 (22)
This criterion in terms of the J, - and I, - invariants is expressed by:

3J2 4 (60c—00t) 11 = GocTot (23)
Fig. 5 presents the intersection of the paraboloid with the o;=o; plane. For
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Fig. 5. The intersection of the paraboloid failure surface with the plane o;=ay
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G0 =0, the focus is carried into infinity and the paraboloid, just as the cone,
transforms into the cylinder.

On the other hand, the paraboloid degeneratesinto the principal octa-
hedral plane for o, /o= . Its equation becomes:

61+05103 =064t , (24)
and the failure criterion takes the form:

Opp = f;)t (25)

Relation (25) states that failure occurs when the stress normal to the
octahedral plane is equal to one-third of the failure stress in uniaxial tension.
In small strain theory the plane can be associated with the dilatational strain
energy and is often referred to as the dilatational plane. When dealing with
large deformations it is best referred to as the principal octahedral plane.

The intersection of the paraboloid with the 6,=0 plane yields an el-
lipse whose equation is given by:

0'12_'0'162 + 0'22 =} 3P(0'oc""°'ot) = GocOot (26)

This ellipse degenerates into a straight line for ../, —>o . In this case
we have:

(oy+ 62) == Opt (27)

Fig. 6 presents the intersections of the elliptic paraboloids with the o,
=0 plane for parametric valus of the o, /o, -ratio varying between unity
and infinity.

It is worthwhile now giving the distance v'3 oy of the focus of the pa-
raboloid from the origin. This quantity is given by:

V3 op =
i (Goc—00t)

& {46000'01:"‘5200_5201;} (28)

Finally, the following remarks concerning the applicabitity of these
three types of criteria seems to be in order:
i) The Mises-Hencky failure criterion depends only on the octahedral shear
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Fig. 6. Intersections of the circular paraboloid failure surface with the c3=0 plane for para-
metric values of R.

stress and it is represented by a cylindrical surface with axis the principal
stress space diagonal. It is convenient only for materials which obey the
equality o,,=a,;. Since none of the engineering materials follows this assump-
tion this criterion is convenient only for monocrystals and very ductile
materials.

i1) The other two criteria, the conic and the circular paraboloid, depend on
both the octahedral shear and normal stresses. Therefore, they take into con-
sideration not only the influence of the distortional part of the strain energy
but also its dilatational part. Moreover, these criteria are better adapted to
the real behavior of the engineering substances since they take care, in a ra-
tional way, of the existing differences in the failure characteristics of the ma-
terials when they are submitted either to simple tension, or to simple compres-
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sion. Such differences cannot be encountered either by the Mises-Hencky or
the Tresca types of yield or failure criteria.

iii) Comparing the Coulomb cone, expressed by relation (12), or its intersec-
tion with one principal stress plane expressed by relation (16) with the re-
spective relationships for the circular paraboloid given by Egs. (21) and (26),
it becomes clear that the expressions for the paraboloid are much simpler
than those of the Coulomb criterion. It constitutes the simplest variant of a
general criterion, which describes with high accuracy an extremely wide class
of experimental observations.

The elliptic paraboloid failure criterion avoids the physically unlike-
lihood to dispose the materials in their all equal tensile loading modes an
apex in their failure locus. Based on theoretical considerations for the failure
envelope in the Coulomb-Mohr theory it has been shown (see Ref. [5], chapt.
XL 3 pp. 294-300) that only for certain conditions, fulfilled in the compression
zone of loading, there is a real contact between the failure stress circles and
the failure envelope. Moreover, experimental evidence with brittle mate-
rials [11] indicated clearly that the angular apex of the cone in the Coulomb-
Mohr criterion is rather physically improbable and the failure behavior of
substances in this zone of loading fits better to a smooth curve resembling
the neighbour zone of an circular paraboloid.

We shall see in the following that such a criterion based on an circular
paraboloid surface fits very well with the existing experimental evidence
with a variety of substances and explains satisfactorily their failure behaviour
presenting a considerable versatility and adaptability to become a generali-
zed failure criterion.

EXPERIMENTAL EVIDENCE FOR FAILURE CRITERIA OF THE CIRCULAR
PARABOLOID TYPE

Extensive experimental evidence on metallic, polymeric and geologi-
cal materials has indicated a clear dependence of the yield loci of these mate-
rials on their respective strength differential factor R. The very meticulous
early experiments by Coffin [12] on gray cast-iron, a very brittle material,
with 6,,=100 X10%psi and o,=33 x10%psi and Grassi and Cornet [13]
with 6,,=96 x10%psi and oc,=28.5 x10%psi gave, both of them, a value
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for R=3.0. Fig. 7 presents the yield locus of these materials, normalized to
the yield stress o, in simple tension. It is clear from this figure that all expe-
rimental results fit excellently the circular paraboloid failure criterion.

Fig. 7 presents a conical section of the circular paraboloid with a strength
differential factor R=3.0 with the plane o, /o,;=0. In this principal plane
0, [60t=0, [0,t=1.0 whereas —oc, [6,=—0, [654=—3.0.

Although there are not sufficient data in the compression-compression
quadrant, it is clear that the material follows such a form of criterion. If one
considers, further, all eventual discarding of results, which were assumed as
non-compatible with existing theories in that early time of the execution of
the experiments, one may assumes that the results given in the literature
should be taken as mandatory.

On the other hand, concerning the yielding mode of various ductile
materials, the most famous experiments by Taylor and Quinney [14] indicate
clearly that aluminium and copper with R approaching unity, obey satisfac-
torily the Mises yield criterion. However, mild-steel specimens deviate con-
siderably with all the existing experimental points by various studies lying

A 02/%%:
0/002

1lo
Ot‘\ -30 0 p—

B ¢ 0 v 771/00*
R=3.0
0C = o =1 0
AA'=2V1 o .
BB'=2V10/3 gy, B’ Yield locus for gray
00'=2VZ 0p; R cast iron (R=30)
A = ° \ o Coffin points

a Grassi + Cornet points

Fig. 7. The yield locus for gray cast-iron with R=3.0 and the experimental points derived
from tests of Coffin and Grassi and Cornet.
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Fig. 8. The experimental results of Taylor and Quinney and Lode for the yield stresses of
various kinds of steels and coppers and their coincidence with the circular paraboloid
yield criterion with R=1.30.

consistently outside the Mises yield locus. It can, then, readily be proven that
these values obey a circular paraboloid criterion with a strength differential
factor equal R=1.30. Fig. 8 presents the results of Taylor and Quinney, as
well as the equally reliable results of Lode [45] for various types of steels and
copper, which again show an excellent agreement with the circular para-
boloid type of criterion with R=1.30.

Yield criteria based on circular paraboloid type of criterion may be
extended to predict the failure behaviour of high-polymers.

Fig. 9 shows the yield locus for a series of polymers plotted in the (c,, o,)
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Fig. 9. The yield locus from a series of experiments for various polymers plotted in the
(01, oy)-plane and the corresponding paraboloid locus for R=1.30.

-principal stress plane and taken from ref. [16]. The strength-difference effect
for all these materials was found tobe R=1.3 approximately. In the same
figure the conical section of the circular paraboloid surface with the ¢,=0
plane was plotted for R=1.30 and represented by the continuous ellipse. It
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is clear from this figure that again the elliptic paraboloid failure criterion cor-
roborates all experimental results.

On the other hand, experiments executed by Spitzig et al. [17] on va-
rious types of steels, presenting strength differential ratios o, /o, = 1.055,
compared their results with the conical type of criterion. The values for the
tangent of the semi-angle, «, of the apex of the cone were found to be tana
=0.026 and 0.028 respectively, whereas the distance, V3 c,, of the apex of the

cone from the origin of the coordinates, multiplied by the factor \—/g—R, were
given as v2 Ro,=1.480 and 1.066 MPa. However, from the respective va-
lues of o,, and o, these quantities are 1.47 MPa and 1.070 MPa respecti-
vely. Therefore, the theory by Spitzig et al. based on the conical failure cri-
terion yield satisfactory results. However, these results, with ratios oy /o4t
of the order of R=1.10, correspond to yielding loci, which differ only slightly
between theories and, therefore, they are not decisive for the selection of the
correct criteria.

In order to show the weakness of conical failure criterion, we have
plotted in Fig. 10 the yield loci derived from both criteria and for identical va-
lues of the strength-differential factor R=o,, /. It can be readily seen from
the corresponding loci that, whereas, for values of R close to unity, there is
a small difference between the loci derived from both criteria, for larger va-
lues of R(R>1.10) the differences increase and they become significant,so that,
for brittle materials with R approaching values of 3.00 the ellipses of the con-
ical failure criterion degenerate into a parabola passing through the points
(1,0), (0,1) and (0,-3), (-3,0), whereas for R>3.00 these curves become hyper-
bolas.

The conical failure criterion has been introduced and extensively ap-
plied by Nadai [19], who reports also experiments and applications of the Cou-
lomb-Mohr criterion, which is a precursor and an outcome of the conical fail-
ure criterion. Moreover Bauwens [18] and Sternstein and Ongchin [19]applied
it to polymers under the form:

w+Ap =C (29)
where 1, is the octahedral shear stress, which is directly related to the second

stress invariant J,, p is the mean normal stress, and A and C real constants,
with the constant C, having dimensions of stress. As it is pointed out by Ra-
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Fig. 10. The families of yield loci for the two types of strength-differential modified criteria

for constant yield stress in simple tension and R varying between R=1.3 and R=3.0. Full

lines correspond to the paraboloid criterion, whereas dotted lines correspond to the conic
criterion.

ghava et al. [13], Eq. (29) is another expression of the relationship:
Vg irtal, =c¢ (30)

in which it was taken into account that the odd dependence of any failure
and yield criterion on the J, -stress invariant is insignificant and it may be
neglected.

In this relation a is the so-called mean-stress coefficient and ¢ expresses
the basic strength of the material [20]. This criterion for constant values of
a and ¢ coincides with the Drucker-Prager criterion for soils [21].

The constants A and C in the criterion of Eq. (29) are expressed by:
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A — Zoc— %t and C = _CocTt 31
Goc 1ot Goc + 0ot ©1)
which when compared with relations (9) and (10) of the conical failure cri-
terion yield:
Ve 3
A —Ttana and C =i oatana (32)
In the same context the circular paraboloid criterion was suggested for
the first time by Schleicher [3], as early as 1925, and elaborated by Stassi d’
Alia [22] and Tschoegl [8]. Raghava, Caddell and Yeh [23] have applied it to
the yield behaviour of some polymers and compared it with other forms of
the same idea. Theocaris [16] has discussed its application and Theocaris et
al. [24] have used both criteria, the conical and the circular paraboloid, to show
the influence of mechanical properties of a bimaterial plate when a crack ex-
isting in the one phase approaches the interface.
The Schleicher-Stassi criterion for plane stress conditions becomes:

(61% 4 0,*—0165) +3 (Goc—00t)P = ot (33)

It consists of three terms, the first of which expresses the distortional com-
ponent of energy and corresponds to the classical Mises yield condition, the
second term expressed an elastic energy, depending on hydrostatic stress, p,
and the difference in yield stresses for compression and tension, whereas the
right-hand side term is the geometric mean of these two yield stresses.
Addition of the three terms in Eq. (33) is legitimate, since these terms
express energy quantities.They tend to alimit, when ¢,,=a,;, which reduces to
the classical Mises yield condition for ductile materials. Moreover, for 6,,> >0,
when it may be assumed that o, /o0, Eq. (33) represents an ellipse,
which is equal in size to the typical Mises ellipse with c,,=o,; and it passes
through the origin of coordinates in a (o, /oy, 0,/0,.)-diagram, as well as
through the points (-1, 0) and (0, -1). All other ellipses, if they are referred
to the same yield stress in simple compression, o,, are smaller in size
than these two limit curves, they pass, all of them, through the points
(-1, 0) and (0, -1). Fig. 11 presents the family of the yield loci according to
the Schleicher-Stassi criterion and normalized to the same yield stress in simple
compression. It is clear from thisfigure that the ellipses for R=1.0 and R=o
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Fig. 11. The family of the circular paraboloid yield criteria with R varying between unity
and infinity for the same yield stress in uniaxial compression.

are equal. Contrariwise, Fig. 12, which presents a similar family of yield loci
but for the same yield stress in simple tension contains ellipses, whose sizes
increase progressively as R is increasing, but all ellipses pass through the
points (1, 0) and (0, 1) in the o, /6,-6, /0, principal stress space.

Compraring the yield loci resulting from the two models and the exper-
imental data available for various materials, it may be concluded that,
whereas the Schleicher-Stassi criterion corroborates satisfactorily the exper-
imental evidence with various materials, the Nadai-Bauwens-Sternstein
criterion deviates significantly, especially in the critical compression-compres-
sion quadrant.

Furthermore, a noticeable difference between the two types of criteria
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Fig. 12. The family of the circular paraboloid yield criteria with R varying between unity
and R=2.0, for the same yield-stress in uniaxial tension in the (g, )-plane.

exists which influences considerably the reliability of their results. Indeed,
the Nadai-Bauwens Sternstein failure criterion, derived from the conical
criterion, as it is expressed by relation (29), considers an algebraic addition
of stresses, which are not collinear. The octahedral shear stress, t,,lies always
on the deviatoric plane, whereas the hydrostatic component, p, is always nor-
mal to this plane. Therefore, any algebraic addition of these stresses is mean-
ingless. Their addition is explained if we consider from relation (8) that only
the component of octahedral shear stress is multiplied by cote and there-
fore collinear to o,,-stress added to it.

On the contrary, addition of the terms in Eq. (26) is legitimate since
these terms express energy quantities. This is another reason to consider this
criterion and therefore the circular paraboloid criterion as a reliable criterion
describing satisfactorily the failure mode of engineering substances.

THE FAILURE CRITERION IN ANISOTROPIC BODIES

A final remark in closing this review paper is worthwhile. This remark
concerns the extension and generalization of the circular paraboloid failure
criterion to initially anisotropic materials. For this type of materials the sim-
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ple circular paraboloid type of failure criterion is no more sufficient. In the
simple case of transversely isotropic materials, where the substance is defined
by five independent material constants, that is two elastic moduli E;, E; along
the principal axes of anisotropy, two Poisson’s ratios vyy, vpp and one
shear modulus G, the failure locus is no more symmetric in the principal
stress space. In this case the so-called tensorial-type criteria are valid. The
Tsai-Wu [25] tensorial theory has been widely used for transversely isotropic
materials as they are this important category of materials, that is the fiber
composites, the paper, and all metals submitted to severe rolling and other
oriented mechanical processes.

Tensorial type failure criteria are defined by failure surfaces in the
principal stress space by tensor polynomials. Under plane stress conditions
when the coordinate axes are aligned with the axes of material symmetry
these criteria contain only linear and quadratic terms and they are expressed

by:
F.,0,%+2F,0,0, + Fy0,® + Fio,+Fy0,+ Feemy® =1 (34)

where the subscripts ; and » on stresses ¢ and 7 denote the strong and the
weak directions respectively. Because of the symmetry conditions for plane-
stress or for transversely isotropic materials the factors Fiq Fys and Feg
are about or are equal to another factor because these symmetry conditions
on the t,,-stress require these factors to vanish.

Further restrictions on these factors require that:

F Fe>0
FyoFe6>0
and (35)
F122“F11F22<0

Since again the failure surface should be open in the purely compres-
sive octant the choice of the strength factors, Fjy;, should give always forms of
the failure surface obeying this requirement. This restriction derives from the
fact that hydrostatic compression for moderate pressures cannot lead to
failure. Then, the argumentation made previously for the isotropic ma-
terials is still valid and the circular paraboloid becomes an elliptic one.

For many anisotropic materials, like paper and unidirectional compo-
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sites, which are assumed as transversely isotropic the factor F,,, character-
izing the strength interaction between normal stresses ¢, and ¢, takes in-
significant values.

This factor determines the inclination of the failure ellipses, which are
formed by intersections of the failure surface described by relation (34) and
planes of constant shear, 7,.

On the other hand, all other factors of equation (34) are related to the
intercepts of the failure elliptic paraboloid with the principal-stress axes.

From these considerations it may be derived that the value of the F,,
factor determines the deviation of this elliptic paraboloid from the circular
paraboloid corresponding to an equivalent isotropic material, thatis the mate-
rial with the same mechanical characteristic properties but with zero anisotropy.

For orthotropic materials the space diagonal is parallel to the axis
of symmetry of the failure surface. The value of the factor F,, defines the
angular displacement of the corresponding failure surface. There are many
methods to evaluate the F,-factor. These are not described here. We are
limited to show only in Fig. 13 the influence of the F,,-factor on the shape
and orientation of ellipses corresponding to conic sections of the elliptic
paraboloid with the plane 7,,=0 of a paperboard taken from ref. [26].

It is clear from this figure that, although theintercepts of the intersec-

#ozmpa)

T1=0

—
01(MPa)

Fig. 18. Conic sections of the failure locus for a type of paperboard (anisotropic material)
for 7,,=0 and variying values of the strength factor F,, (after ref. [26]).



110 IIPAKTIKA THX AKAAHMIAY AGHNQON

tions of the family of the ellipses in the plane ¢,=0 with 7,,=0, with the
0,=0 and o, =0 axes are constant, and the values of the principal stresses 4o,
and 4o, in tension and compression are unchanged, the shape and orienta-
tion of the ellipses are drastically depending on the values of the F,,-factor.

Fig. 14 presents the conic sections of the same material, a paperboard
with F,=0, for different values of the principal shear stress t,,. As the shear

AUz(MPG)

G(20.71, 10.99)

8.7
o =< = 2
_z(& o, (MPa)

- -20

Fig. 14. Conic sections of the failure locus for a type of paperboard with strength factorF,,=
0, for different values of the applied t;,-shear stress (after ref. [26]).

stress increases the ellipses change dimensions in a self-similar mode without
any distortion.

Then, it may be concluded that for anisotropic materials the failure sur-
face may still be repressented by a generalized elliptic paraboloid as for
isotropic materials, but in this case this failure surface is displaced from the
origin of coordinates in a quantity depending exclusively on the F,,-strength
factor, multiplying the term with the product (o,0,) of the principal
stresses.

CONCLUSIONS

In this paper failure criteria have been examined in multiaxial states
of stress associated with geometrical representations of surfacesin the prin-
cipal stress space.
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It was shown that the circular paraboloid defined by the ¢,.- and o, - fail-
ure stresses of the material in simple compression and tension respectively,
describes satisfactorily the failure mode of all isotropic materials from the
brittlest to the most ductile. The Mises cylindrical failure space and the
Coulomb conical one are cases which yield approximate results when compared
with experiments and only in limited zones of loading.

The circular paraboloid failure surface has its axis symmetry coin-
ciding with the space diagonal for which it is valid that ¢,=0,=0, and the
direction cosines are &,=§,=§,=1/v3 .

Finally, it was shown that for anisotropic materials a similar failure
surface is still valid but the paraboloid becomes elliptic and is displaced from
the space diagonal.

NEPIAHYIZ

Eic mhv eloaywyny thc dvaxowdeewg EEetdlovrat to mapadedeypéva xpuTi-
pra Sxppotic xal dotoytag Ty YAxdy. T Baoiedtepa EE adtdv dptlouvy &tt Sop-
poly 7 aortoyle &Y HAdv AapBavel ydpav tav elte ) péyiom) SwTunTind Teolg
(vprthptov Tresca) elre % otpopixy &vépyeix (xputiprov Mises-Huber-Hencky)
AdBouv xpfoipov Tiuny, Sptlouévyy elte dmd Ty dvroxdv Tol VAol elg xabapav
Sudtpmow, elre &md 0 TeTpdywvoy g looduvdpov Tdoewe.

*Ev tobrowg e000¢ € dpyiic Exel mapatnen0i 6t SAc To GAa TEY waTHoKREU-
&v Eyovv Stdpopoy avroyly dtav xatamovolvrat eig amAdv Epehnuoudy 4 el amAly
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vigoTpéTOV *paTiveEwG ToU HAxol.
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Yuv Tob Mises, &rav ©0 OAxdv xatamoveltar el SididoTtatov évtatiniy xatdoTtasty.
A TpidtdoTaToy EviaTinny xatdoTacty 6 pév Timog Tob Tresca AauBdvel THv pop-
oy Eaywvinod mplopatog pé Y xbptay Surydvioy Tob Ydpov TEBY xvplwy ThoEwY
¢ &Eova, 1O 3¢ xprtiprov Tob Mises AauBdver Thy popehy xvAivdpov pt v adThy
Swydviov @¢ &Eove.
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*Amoxhicerg éx T@Y TémV adTdV TdvrtoTe Tapoustalovrar xal idtwe el ToV
Tetoptnpbptoy Ti¢ OAidewc-OAidews, émov % Emidpacig T¥c dvicotpdmov xpatdv-
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oUVLETOGNG THG Evepyetag, Aol 7 StoyxwTiny &vépyela, 6 TpoxdTTKY TéTOG SLappo-
¢ mpooeyytler xahdtepov mpdg To melpapaTina deSopéva.

Eic miv épyactay admiy peletdvrar pévov dpyixds iobdtpoma OGAukd, T& 6-
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o7 To péve Tod VTaxobovy el TV cuvbnuny cuppetplag clvar 6 x@vog xol TO
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