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OYIIKH.— Internal Strain of Ge, by G. E. Zardas and C. N. Koumelis *, S

700 ’Axadnpained x. Kaloapog *AdeEomodrov.

ABSTRACT

The problem of the Internal Strain is examined in Ge by measuring
the displacement of an X-Ray beam diffracted on it under an uniaxial stress
along the [111] direction. The law of the change of the bond lengths b7y ver-
sus the applied stress was determined. The value of the bond bending constant
{ was found to be 0.88.

INTRODUCTION

The problem of the Internal Strain in crystals with tetrahedral bonds
consists in achieving the strain ¢, , of the tetrahedral bond for a given mac-
along this bond. The strain €’

roscopic strain e is generally not equal

[111] [111]
to the macroscopic strain ¢, , but is connected to it by: @@ @

4 = g —C.¢
[111] [111] [111]

where: 0 {1 is the so called bond bending constant.

The bond bending constant of Ge and Si was found with the help of
X-Rays for the longitudinal and transverse case.® ® The experiment was
extended to the zinc-blende structure, specifically to Sbln ® and GaAs. @ ®,

This experiment, which is still in progress, examines the change of the
bond b,
holds for all bonds b

under the stress = For reasons of symmetry, the same law

[1113°

Aty

CALCULATIONS

Under a sress = a cubic crystal becomes rhombohedral (Fig. 1). In

ity P
Fig. 2 we present the atomic positions on the crystallographic plane (1 1 0)
of the strained diamond structure crystal under the stress?[“”, assuming

an internal strain.

* . E. ZAPAAET - X. N. KOYMEAHE, 'H éontepikn mapapopooois tig 10 Ge.
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piate (110)

Tr111]

Fig. 1 Cubic crystal under the stress _1-)”1“ becomes rhombohedral

\"‘[1 1m

Fig. 2 The crystallographic plane (1 1 0) of the diamond
under the stress T:)[““ when £ == 0
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From Fig. 1 we have

coSa

cosp = . (1)
cos;
d2(1111 =3.a% (1 +2.cosa) (1p)
‘/2 1+2.cosx i
208p = — — —
i a3 1 + cosx .
Fig. 2 leads to:

) a? a%, ! '

bl = 4 +_1§" L+ +0) ey |- (3-C—1) gy —1 (2)

where ao is the lattice constant of the unstrained crystal.
If the lattice constant a does not follow the strain tensor and is unknown

function of the strain ¢ equation (2) does not solve the problem, but a

[y
further experiment is neeeded for determination of the relation
a=a[eg,,]

EXPERIMENTAL PROCEDURE

On the photographic plate (Fig. 3) we measure the distance S of the
reflection (hkl) versus the stress Tr>” 11y The Bragg law gives for a rhombohedral
crystal: @

2-a-sin6-V(i——com)-(l—{—2-cosa‘)-
‘ = A

Ve k2 B+ [h2+ k12— 2. (h-k +k-1+1-h)] ~cosa

The last equation, the equation (1) and the relation

dyyyy = 0 - 13 [ +eyy,]

lead to:
1 h2+k2+l2 y
_ 4-a02-[1—|—s[m]]2'sin26v -
o = T e K1 P—2.(h-k+k-1+1-h
| P2 (k)

b.oag2.[1+4 s[““]z- sin2 6
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Fig. 3 The geometry of the reflection (hkl)
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Fig. 4 The curve S=S8 [ep1443] for the reflection (11 11 3). (R = 150 mm)
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h?++k*412—2.(h-k+k.141-h)
boage (I 4oy, F-sin?0

(h k11 e
beag-[1+¢y,, P sin®6

2

L+

a= al:b2 : [1 =+ 5[““]2'

The last equation gives the lattice constant a, versus 6 and ¢ which can

[144p
be experimentally determined. The Bragg angle 6 is determined from Fig. 3:

6—1 t i
—7' arcan<‘—'T)

The strain = is determined from the relation: 10 (1) (2)

[111]

o [sut2-8p S4q
g = 3 + 3 * T

RESULTS

We have experimented on Ge, the elastic constants of which are: 1%

2
s = 0.978.1012
dyne

2
$19 = — 0.266 - 10712 d"m .

yne

2
s = 1.490.1072 dcm

yne

For Moka, radiation, the reflection (11 11 '3) was chosen because it gives

the large value:
tanf = 23.5320

Figure 4 shows the experimental curve of the distance S of the reflec-
tion (11 11 3) from the center of the photographic plate, versus the strain
for R =150 mm.
Figure 5 shows the corresponding Bragg angle 6 versus ¢,,,,. From Fig.
5 we calculate the lattice constant a, shown in Fig. 6. The curve is not linear
and moreover has a minimum around &, = 0.8 ®/o. We cannot give an ex-

Sy

planation for this behavior.
By trial and error the curve of Fig. 6 could be expressed by the equation:
a® +K-.a.¢e,,,+ L.k, +M.a+N-g,,,+P=0
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1'5\ t;;[‘111]
%0

Fig. 5 The Bragg angle 6 of the reflection (11 11 3) under strain g1y
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Fig. 6 The curve a=a [erq445]
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With an electronic calculator we obtain the follow values for the coefficients:

K = 2217299 A
L = 6.356274 A?
M =-—-11.316211 A
N =-—12.530700 A?
P = 32014158 A2

Considering the bond bending constant as a parameter, we plot in Fig.
7 the bond length by,5, from Eq. 2. All cases give second degree curves. One
of them corresponds to the correct value of the unknown .

Every curve of Fig. 7 has an axis of symmetry; its section with the cor-

responding curve determines an apex. Figure 8 shows the abscissas Sy, of
the apexes versus .
Now we make the arbitrary hypothesis that from the curves
brisyy = By [epaagp €1
of Fig. 7, correct is the curve which has its apex at the same value of ¢ as

[ili]u
the apex of the curve:

a=—a [emi]]

From the apex of the curve of Fig. 6 we get ¢
For this value Fig. 8 gives:

= 0.69°oo.

[111]

¢ =0.88

for the bond bending constant of Ge. This value is in good agreement with
those referred in the literature @ ® 1 and with the theoretically calcu-
lated one (9.

We note that in this experiment, the value of the bond bending constant
was found without measuring the X - Ray intensity, but solely from the po-
sition of the Bragg reflection.



ZYNEAPIA 4 AIIPIAIOY 1985 367
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Fig. 7 The group of the curves b,y = b1y [ep143]
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Fig. 8 Values of abscissas of the apexes of Fig. 7
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IHTEPIAHVYIZ

H EXQTEPIKH ITAPAMOP®QZXEIX EIX TO GE

Eic 76 mapdy melpapa EEntdoln 1o mpéPinpa g Eowrepiniic mapapoppdaee
cig 10 Ge du petphioews tig peratomicewe ypoaupic daxtiveyv Roentgen Aéye &Ea-
oxfoews povoakovikic Thoews xata iy Siebbuvory [111]. Ebpéln & véuog tig pe-
ToforTc TGV deopdy b(MT) ouvapThoe. Tic Epapuolouévne tdoeng, cHpéln 3¢ 4
iy 0.88 dux v orabepay xdudewg dsopdv L
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