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A further restriction, which is only valid for ideally plastic bodies, has been
introduced, according to which the magnitude of the yield stress is the same in simple
tension and compression. However, this assumption is never met, except, perhaps, only
for ideal single crystals. All polycrystalline materials present some small or large
difference in yielding under simple tension and compression.

Furthermore, since reversal of one stress influences the sign of J, reversing also
it, fact which violates the symmetry obligations of the yield criterion, it follows that
f(J,,J,)=0 should be an even function of J,.

Finally, because of the assumption of isotropy and non-existence of the
Bauschinger effect, an interchange in the order of succession of the principal stresses
and their opposite values must not influence the yield locus. Therefore, the shape of
the yield locus may be fully defined by one of its twelve 30-degree segments limited
by a simple axial load and the successive pure shear loading.

Leaving aside in this study Tresca’s and Coulomb’s yield criteria, which are
depending either on the maximum shear stress or on a combination of the maximum
shear stress and the hydrostatic stress, we are concentrating to study criteria based on
energy assumptions. Among then and the most ancient is the so-called Huber - Mises -
Hencky criterion.

It was as early as 1904 that Huber [1] has introduced his yield or brittle-fracture
criterion, where he distinguished two cases, when the hydrostatic com-
ponent of stresses applied to the specimen is either tensile, or compressive. Huber’s
criterion was based on the distortional component of the elastic energy, for
compression, whereas, for tension, the criterion depends on the total elastic energy.
Afterwards, von Mises [2], and independently Schleicher [3], have introduced the
notion of the equivalent critical yielding stress, instead of that of simple shear k, as an
arbitrary function of the hydrostatic component of stresses. The criterion was
convenient for materials, whose yielding depended on hydrostatic tension or
compression, and therefore it presented different critical values for yielding under the
different modes of loading.

According to this criterion yielding occurs when the second stress invariant J,
attains a critical value equal to this energy in simple tension o,. Hencky [4] was the
first who interpreted this criterion stipulating that yielding begins when the
recoverable elastic distortional energy reaches a critical value, equal to the same
quantity in simple tension or in pure shear. Then, the J,-invariant is not involved and,
furthermore, it is assumed that hydrostatic tension or compression does not cause
any yielding of the material. This may be roughly true only for isotropic metallic
specimens when yielding of the overall metallic body is anticipated.

A simpler than Mises’s criterion is Tresca’s criterion [5], according to which
yielding occurs when the maximun shear stress in the body reaches a certain value,
that is the respective maximum shear stress in simple tension. Although this criterion
is basically not well founded, since it considers only shear stresses creating yielding,
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whereas all stresses acting on the body should participate. However, it is frequently
used because of its simpicity.

In soils and other materials, for which the hydrostatic component of stresses
intereferes significantly in yielding and fracture and where yielding in simple tension
is much different to yielding in simple compression, an improvement of the Tresca
criterion is the criterion introduced by Coulomb [6] and Mohr [7]. According to this
criterion elastic strains are neglected and plastic strain-increments are assumed
depending only on the applied stresses. The condition that there is no strain in the z-
direction (along the thickness of plane-strain cases) implies a functional dependence
of the o,-stress on the principal stresses o, and o, along the planes of flow. If the
reversal of the stresses assumes a reversal of strain increments, then the o, -stress is
equal to (0,+0,)/2 and may be, therefore, eliminated from the yield criterion so that
the yielding function is reduced to :

f (D, Tay) =0 (6)
with
p=-12(o+0,) and t_ =1/2(0,-0,) @)

where p is the mean compressive stress taking the place of hydrostatic pressure and
T,.. 1 the maximum shear stress. Then, the yield criterion may be represented by a
locus referred to coordinate axes 1/2 (0,+0,) and 1/2 (0,-0,). This yield locus is closed
on the tension side, if it is assumed that a pure hydrostatic tension may alone produce
yielding. Then, Tresca’s yield condition with 1, =tk, where k is the maximum shear
stress in yielding in a state of pure shear, may be assumed as a special case of Mohr’s
yield condition, when f is independent of p, and the Mohr envelope degenerate, into a
pair of parallel lines to the normal-stress 0-axis.

Coulomb-Mohr’s criterion is not the only criterion depending on the hydrostatic
component of stresses. In this study such criteria will be established and discussed and
important results will be derived concerning the behaviour in yielding and fracture of
real materials.

Although from the early tests of failure of materials it has been realized that the
yield stress in simple tension never coincided with the yield stress in simple
compression, it was assumed, at least for the ductile metals, where this difference was
not so important, that a complete symmetry of the yield locus exists in the tension
and compression spaces. Than, Tresca’s and Mises’ yield conditions were accepted as
describing universally the plastic behaviour of ductile substances [6]. However, in
brittle materials, where the ratio of the yield stress in simple compression o, is much
different to the yield stress in simple tension o, it was accepted that a Mohr-
Coulomb type of yield locus described the plastic behaviour of these substances [7,8].
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Although the Mohr-Coulomb, or internal friction, criterion fitted satisfactorily the
results for nonmetallic geological materials, the agreement established between
experimental results and the theory was mainly attributed to the large scatter of
experimental results and the lack of such results in the third and most critical
quadrant of the principal stress space.

Multiaxial failure criteria were historically developed to characterize the biaxial
failure of materials. They represent the maximum stress, maximum shear, maximum
strain, maximum strain energy, and distortion energy theories of failure, and may be
portrayed as failure loci in a principal stress plane. The simplest of the biaxial criteria
represent polygonal failure loci. Generalization to three dimensions is straight-
forward, and leads, for the simpler criteria, to three-dimensional polygonal failure
surfaces in the principal stress space [9]. On the other hand, Tschoegl [10] and
independently Theocaris [11] have introduced failure criteria for isotropic bodies,
which are based on failure tensor polynomials and which contain all three principal
stresses in a symmetric mode. This restricts application of these criteria to isotropic
bodies and refers the corresponding failure surfaces to the principal-stress space, as
surfaces of revolution around the space diagonal. The space diagonal 0,=0,=0,, has
equal direction cosines E,=§Z=§3=1/\/3 with the positive principal stress axes.

The requirement that the surface should be open in the compressive octant,
because hydrostatic compression at moderate pressures cannot lead to failure,
restricts the choice of surfaces to quadrics. This restriction leaves the cone and the
circular paraboloid as the only failure surfaces with the cylinder as special case of
both these surfaces. For the two parameters defining a quadric surface we can
conveniently select the failure stress in simple tension, 0,, and in simple
compression, 0, [11].

2. THE QUADRIC FAILURE SURFACES FOR ISOTROPIC MATERIALS

2.1 The Conical failure locus
This failure criterion corresponds to the well-known Coulomb criterion [7,12] :

Itl+ po =1, €))

where o and 1 are the normal and shear stresses across the plane of failure, T, is the
failure stress, amd p is the so-called coefficient of internal friction. The Coulomb
criterion is usually applied to biaxial stressing and T, is then taken as the maximum
shear stress. In a triaxial state of stress the simplest modification, which involves the
three principal stresses symmetrically, is obtained by considering the T stress as the
octahedral shear stress o,, and o-stress as the mean normal stress o,,. The criterion

can then be stated as :
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where o, is a material constant. Eq.(9) is also known as the Drucker criterion [13].
This criterion is frequently expressed in the form :

VL +BI, = q, (10)

where B=u/No and 0,=V3/2 o,

The failure surface in the principal stress space for this criterion is a cone with
symmetry axis the hydrostatic axis and whose angle at its apex is equal to 20. Angle o
is given by tga=u. The intersection of the cone with the 0,=0, plane is shown in Fig.1.

az‘ /

A (0,,0,,0,)

Fig.1 - The conic failure surface.

The apex of the cone A has coordinates 0,=0,/u on the principal stress axes. The
cone intersects the positive and negative axes at 0, and -0, respectively, where o,
is the failure stress in simple compression and it is generally larger than o, the failure
stress in simple tension. For ¢,.=0,, the cone reduces to a cylinder and Eq. (9) may
therefore be regarded as a modification of the Huber-Mises criterion, introducing
into it the mean normal stress, weighted by W.

It is worth noting that Eq.(9) represents a linear combination of the octahedral shear
and normal stresses. Expressing n and ¢, in terms of an angle 2a and the co-ordinates
0,=0,=0, of the apex of cone in the principal stress space Eq.(9) takes the form :
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o.ctga+0,=0, (11)
Inserting Eq.(9) into relation (11) we find :

(0,-0,)*+(0,-0,)*+(0,-0,)*-(0,+0,+0,-30,, )*tg2a=0 (12)

This relation represents a cone, coaxial with the hydrostatic axis. It can be rea-
dily shown that the co-ordinates o, of the apex of the cone and its angle are expressed
by [10,11] :

0,= 20,:04:/3(0y-0¢r)

1800 = V2 [(0y-Ogr)/(Go+0op)] (13)
Then, introducing these relations into the previous one (12) we derive for the failure
criterion the expression :

12 [(0y+04;)0, H(Ooe-04p)0, =2/30, 0 (14)
which may also be written as follows :

1/2 [(0,-0,)*+(0,-0,)*+(0,-0,)] - {3D [(0yc-0y)/(0yct0yr)- 20,001/ (0pct0Tr)]1 12=0 (15)

where p=0,, expresses the hydrostatic stress and it is equal to the octahedral normal
stress o, given by:

p =0,, = 1/3 (0,+0,+0,) (16)
Similarly, the octahedral shear stress, 0,, is expressed by [5] :
0,.=1/q [(0,-0,)*+(0,-0,)*+(0,-0,)?] (17)

Moreover, the ratio of the yield or failure stresses in simple compression o, and
in simple tension o, is denoted by :

R =0,/0,; (18)
Quantity R is called the strength differential factor of the isotropic material.

Relation (10) expresses the equation of a conical failure criterion in terms of the ¢,,0,,0,-
principal stresses and the failure stresses o, and o, for simple tension and compression.
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It can be readily shown from relations (13) that when R = 1 and 0,.=0,, the apex
angle, a, of the cone becomes zero and the distance of the apex V3o, becomes
infinite. This means that the Coulomb-cone degenerates into the Huber-Mises
cylinder (9). This criterion is frequently used to represent the yielding of highly
ductile materials [3].

In materials failing at small deformations, for which the infinitesimal theory of
elasticity is admissible, the cylindrical yield locus is associated with the distortional
strain energy. This may not be valid for materials, which undergo large deformation
before failure. In this case the theory leading to a cylindrical surface may be referred
to as the octahedral shear stress theory, as proposed by Nadai [12]. According to this
theory, the material fails when the octahedral shear stress, o, is equal to V2/3 times
the failure stress in simple tension,i.e., when :

0, =V2/3 0, (19)
The o,-stress constitutes a material parameter, which characterizes the failure

behaviour.
Introducing the octahedral shear stress, the Huber-Mises criterion may be stated as :

(0,-0,)*+(0,-0,)*+(0,-0,)? = 20,2 (20)
Equation (20) represents a cylinder of radius \2/3 0, coaxial with the hydrostatic axis.

\\' diagonal

O’z‘

Fig.2 - The cylindrical failure surface
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Figure 2 presents the intersection of the cylinder with the plane of symmetry
containing the o0,-axis and the space diagonal. The cylinder cuts the principal stress axes
at o0, and the crierion assumes that the failure stress in uniaxial tension and
compression are equal. Equation (20) expresses also the fact that failure depends on the
octahedral shear stress alone and the octahedral normal stress ¢, is without influence.

The intersection of the failure surface with anyone of the co-ordinate planes
yields a failure curve representing, in the plane of the two principal stresses, the
associated failure criterion in biaxial loading. The intersection of the cylinder with
0,=0 plane is an ellipse, whose major axis lies along the projection of the space
diagonal on the 0,=0 plane.

Moreover, when 0,.=30,,,and therefore 0,=0,,, we derive that tga=1/V2, which
yields 0,,=35°15". This angle is the complementary angle to the angle of the direction
cosines of the hydrostatic axis, defining the direction of the octahedral normal stress.
For this critical angle the cone disposes three tangent planes parallel to the co-
ordinate planes 0,=0,, 0,=0,and 0,=0,.

On the other hand, for 0,./0,; —° the apex angle becomes a=54°45", which is the
complementary one to the a,, and, in this case, the cone dispose three tangent planes
parallel to the principal 0,-, 0,- and 0,-axes. Then, the distance of the apex of the cone
from origin becomes V30,=2/N30,,. This cone corresponds to a totally brittle
material. The equation for this limiting cone, with semi-angle a=54°45", becomes :

3(0,0,+0,0,+0,0,)- 12p,+40,,2=0 (21)
and the corresponding failure criterion is :
1A2 (0, +0, )=2/3=0,, (22)

For values of the o,./0,- ratio corresponding to very brittle materials the angle a
tends rapidly to its limiting value of 54°45° and therefore the Coulomb criterion is

justified for all brittle materials.
The intersection of the cone with ¢,=0 principal plane (and similarly for the other

two planes) yields :
0,%-0,0,40,% {3P(0yc-05)/(Opc+001)-20,01/ (0o +0y;) }2=0 (23)

It may be readily shown that this equation represents a family of ellipses for ¢,./0,,<3.0,
a parabola for 0,./0,=3.0 and a family of hyperbolas for ,/0,,>3.0. The conic sections
of this criterion for parametric values of the ratio 0,./0,, are shown in Fig.3.

2.2 The paraboloid failure locus
The paraboloid failure criterion constitutes a linear combination of a term depending on
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Fig.3 - Conic sections for the conic failure criterion for parametric values of R

the mean normal stress and the square of the octahedral shear stress. It is an attracting
compromise among all other criteria because it avoids the physically unlikely angular
apex of the cone in the first octant of principal stress space. The equation for a
paraboloid of revolution, which is coaxial with the hydrostatic axis is given by [11] :

(0,-0,)%4(0,-0,)%+(0,-0,)>=12 Ad-4f\3(0 +0,+0,) (24)

where f is the distance between the focus of the paraboloid and its vertex, and d is the
distance of the vertex from the origin (see Fig.4).

It may be readily shown from the properties of the parabolas that the distance f
between any point of the parabola and its focus, which is equal to the distance of its
vertex from its directrix, is expressed by :

A = (0,0, )/2V3 (25)

whereas the distance d between the vertex from the origin of the co-ordinates in the
principal stress space is given by :

d =0,.0,,/V3(0y-0yy) (26)
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Fig.4 - The elliptic paraboloid failure surface. The intersection of the paraboloid
failure surface with the plane 0,=0,.

Then introducing these values into Eq.(24) we derive for the equation of the
paraboloid the expression :

(0,-0,)*4(0,-0,)*+(0,-0,)*+6p(0,.-0y1.)-20, 0 =0 27)

whereas the corresponding failure criterion takes the form :

0,,2+2/3(0c-041)0,,,-2/q 0y 0=0 (28)
This criterion in terms of J, -and I -invariants is expressed by :

3J,4(0,~04)],=0, 01 (29)

Figure 4 presents also the intersection of the paraboloid with the 0,=0, plane. For
0,=0,; the focus is receding to infinity and the paraboloid, just as the cone, transforms

into a cylinder.
On the other hand, the paraboloid degenerates into the principal octaherdal

plane for 0,./0,,—>e. Its equation becomes :
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0,40,+0,=0,; (30)
and the failure criterion takes the form :

o =130, G

Relation (31) states that failure occurs when the stress normal to the octahedral
plane is equal to one-third of the failure stress in uniaxial tension. In small strain
theory the plane can be associated with the dilatational strain energy and is often
referred to as the dilatational plane. When dealing with large deformations it is best
referred to as the principal octahedral plane.

The intersection of the paraboloid of revolution with the 0,=0 plane yields an
ellipse whose equation is given by :

0,2-0,0,4+0,*+3DP(0,0:)=0,Or 32)
This ellipse degenerates into a straight line for 6,./0,,—ee. In this case we have :
0,+0,=0; (33)

Figure 5 presents the intersections of the paraboloids of revolution with the 0,=0
plane of parametric values of the 0,./0,,-ratio varying between unity and infinity.

It is worthwhile now giving the distance \/30F of the locus of the paraboloid from
the origin. This quantity is given by :

V30,=1/2V3{ (40,0130 -0/ (Opc-0¢p) } (34)

Finally, the following remarks concerning the applicability of these three types
of criteria seems to be in order :
i) The Mises-Hencky failure criterion depends only on the octahedral shear stress
and it is represented by a cylidrical surface with axis the hydrostatic axis. It is
convenient only for materials which obey the equality ¢,.=0,, . Since none of the
engineering materials follows this assumption this criterion is convenient only for
monocrystals and very ductile materials.
ii) The other two criteria, the conic and the paraboloid of revolution, depend on both
the octahedral shear and the normal stresses. Therefore, they take into consideration
not only the influence of the distortional part of the strain energy, but also its
dilatational part. Moreover, these criteria are better adapted to the real behaviour of
the engineering substances, since they take care, in a rational way, of the existing
differences in the failure charcteristics of the materials when they are subjected either
to simple tension, or to simple compression. Such differences cannot be encountered
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Fig. 5 - Intersections of the elliptic paraboloid failure surface with the 0,=0 plane for
parametric values of R.

either by the Mises-Hencky or the Tresca types of yield or failure criteria.

iii) Comparing the Coulomb cone, expressed by relation (19), or its intersection with
one principal stress plane expressed by relation (23), with the respective relationships
for the paraboloid given by Eqs.(27) and (32), it becomes clear that the expressions for
the paraboloid are much simpler than those of the Coulomb criterion. Therefore, the
paraboloid failure surface criterion constitutes the simplest variant of a general criterion
which describes with high accuracy an extremely wide class of experimental data.

The paraboloid failure criterion avoids the physically unlike fact that real
materials under an hydrostatic tensile loading dispose a unique failure point, the apex
of their failure locus. Based on theoretical considerations for the failure envelope in
the Coulomb-Mohr theory it has been shown (see Ref.[6], chapt.X1.3 pp.294-300)
that only for certain conditions fulfilled in the compression zone of loading there is a
real contact between the failure stress circles and the failure envelope. Moreover,
experimental evidence with brittle materials [14] indicated clearly that the angular
apex of the cone in the Coulomb-Mobhr criterion is rather physically improbable, and
the failure behaviour of substances in this zone of loading fits better a smooth curve
resembling the respective zone of an paraboloid of revolution.

We shall see in the following that such a criterion based on a paraboloid surface
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fits well the existing experimental evidence with a variety of substances and explains
satisfactorily their failure behaviour, thus presenting a considerable versatility and
adaptility to become a generalized failure criterion.

2.3 Experimental evidence for failure criteria of the paraboloid type

Extensive experimental evidence on metallic, polymeric and geological materials has
indicated a clear dependence of their yield loci on their respective strength
differential factors R. The very meticulous early experiments by Coffin [15] on gray
cast-iron, a very brittle material, with 6,,=100x10° psi and 0,=33x10° psi and Grassi
and Cornet [15] with 6,,=96x10° psi and 0,,=28.5x10° psi gave, both of them, a value
for R=3.0. Figure 6 presents the yield locus of these materials normalized to the yield
stress 0, in simple tension. It is clear from this figure that all experimental results fit
excellently the paraboloid failure criterion.

Figure 6 presents the same conical section of the paraboloid but now with a
strength differential factor R=3.0 in the plane 0,/0,,=0. In this principal plane it is
valid that 0 /0,=0,/0,=1.0, whereas -0,/0,=-0,/0,=-3.0. Although there are not
sufficient data in the compression-compression quadrant, it is clear that the materials
follow such a form of criterion.
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&  Grassi + Cornet points

Fig.6 - The yield locus for gry cast-iron with R=3.0 and the experimental points
derived from tests of Coffin & Grassi and Cornet.
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On the other hand, concerning the yielding mode of various ductile materials, the
most famous experiments by Taylor and Quinney [16] indicate clearly that aluminum
and copper, with R approaching unity, obey satisactorily the Mises yield criterion.
However, mild-steel specimens deviate considerably with all the existing
experimental points lying consistently outside the Mises yield locus [6]. It can then
readily be proven that these values obey a paraboloid criterion with a strength
differential factor equal R=1.30. Figure 7 presents the results of Taylor and Quinney,
as well as the equally important results of Lode [17] for various types of steels and
copper, which again show an excellent agreement with the paraboloid type of
criterion with R=1.30.
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Fig.7- The experimental results of Taylor and Quinney and Lode for the yield stresses
of various kind of steels and coopers and their coincidence with the stress-differential
modiefied yield criterion with R=1.3

Yield criteria based on the paraboloid type of criterion may be extended to predict
the failure behaviour of high polymers. Figure 8 shows the yield locus for series of
polymers plotted in the (0,,0,) principal stress plane and taken from ref.[18]. The strength-
differential effect for all these materials was found to be approximately R=1.3. In the same
figure the conical section of the paraboloid of revolution surface the 0,=0 plane was
plotted for R=1.30 and represented by a continuous ellipse. It is clear from this figure that
again the paraboloid of revolution failure criterion corroborates all experimental results.
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On the other hand, experiments executed by Spitzig et al. [19] on various types
of steels, presenting strength differential ratios o0,./0,,=1.055, fit the conical type of
criterion. The values for the tangent of the semi-angle, a of the apex of the cone
were found to be tg a=0.026 and 0.028 respectively, whereas the distance V3 o , of the
apex of the cone from the origin of the co-ordinates, multiplied by the factor V3/2 R,
were given as V2 R0,=1.480 and 1.066 MPa. However, from the respective values of
Oy and o, these quantities are 1.47 MPa and 1.070 MPa respectively. Although the
theory by Spitzig et al., based on the conical failure criterion, yields satisfactory
results, these results, with ratios 0,./0,; of the order of R=1.10, correspond to yielding
loci, which differ only slightly between theories and, therefore, they are not decisive
for the selection of the correct criteria.
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Fig. 8 - The yield locus from a series of experiments for various polymers plotted in
the (0,,0,)-plane and the corresponding paraboloid locus for R=1.3.

In order to show the weakness of conical failure criterion, we have plotted in
Fig.9 the yield loci derived from both criteria, the parabolic failure criterion and the
conical criterion, for identical values of the strength-differential factor R=0, /0, . It
can be readily seen from the corresponding loci that for values of R close to unity,
there is a small difference between the loci while for larger values of R (R>1.10) the
differences increase and they become significant, so that, for brittle materials with R
approaching values of 3.00, the ellipses of the conical failure criterion degenerate
into a parabola passing through the points (1, 0), (0, 1) and (0,-3),(-3, 0), whereas for
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Fig. 9- The families of yield loci for the two types of strength-differential modified
criteria for constant yield stress in simple tension and R varying between R=1.3 and
R=3.0. Full lines correspond to the paraboloid criterion, whereas dotted lines
correspond to the conic criterion.

R>3.00 these curves become hyperbolas. On the contrary, the parabolic failure
criterion yields always elliptic intersections in any principal stress plane for every
value of R.

The conical failure criterion has been introduced and extensively applied by Nadai
[12], who reports also experiments and applications of the Coulomb-Mobhr criterion,
which is a precursor and an outcome of the conical failure criterion. Moreover
Bauwens [20] and Sternstein and Ongchin [21] applied this criterion to polymers
under the form :

T,+Ap=C 395)

where T, is the octahedral shear stress, which is directly related to the second stress
invariant J,, p is the mean normal stress, and A and C are real constants, with the
constant C, having dimensions of stress. As it is pointed out by Raghava et al.[22],
€q.(35) is another expression of the relationship :

V3,2 +al =c (36)

in which it was also taken into account that the odd dependence of any failure and yield
criterion on the J,-stress invariant is insignificant, and it may therefore be neglected.

In this relation (36) the quantity a is the so-called mean stress coefficient and the
constant ¢ expresses the basic strength of the material [23]. This criterion for
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constant values of o and ¢ coincides with the Drucker-Prager criterion for soils [24].
The constants A and C in the criterion of Eq. (35) are expressed by :

A = (0,04 )/(0y+0,;) and C = 0,0, /(0pct0yy) 37)

which, when compared with relations (16) and (17) of the conical failure criterion,
yield :

A=22tga and C=32\20,tga (38)

In the same context the paraboloid of revolution criterion was suggested for the
first time by Schleicher [3], as early as 1925, and elaborated by Stassi d’Alia [25] and
Tschoegl [9]. Raghava, Caddell and Yeh [22] have applied it to study the yield
behaviour of some polymers and compared it with other forms of the same criterion.
Theocaris [10,18] has discussed its application and Theocaris et al. [26] have used
both criteria, the conical and the paraboloid of revolution, to show the influence of
mechanical properties of a bimaterial plate when a crack, existing in one of the
phases, approaches the interface.

The Schleicher-Stassi criterion for plane-stress conditions becomes :

(0,2 +0,2-0,0,) +3 (0yc-Oyr )P = OycOy; (39)

This criterion consists of three terms, the first of which expresses the distortional
component of energy and corresponds to the classical Mises yield condition, the
second term expresses an elastic energy, depending on hydrostatic stress, p, and the
difference in yield stresses in simple compression and tension, whereas the right-hand
term is the geometric mean of these two yield stresses.

Addition of the three terms in Eq.(39) is legitimate, since these terms express
energy quantities. They tend to a limit, when o,=0,,, which reduces to the classical
Mises yield condition for ductile materials. Moreover, for 0,.»0,., when it may be
assumed that o,/0,. »0, Eq. (39) represents an ellipse, which is equal in size to the
typical Mises ellipse, with 0,.=0,,, and it passes through the origin of coordinates in a
(0,/0,, 0,/0,)-diagram, as well as through the points (-1, 0) and (0, 1). All other ellipses,
if they are referred to the same yield stress in simple compression o,,., are smaller in size
than these two limit curves and they pass, through the points (-1, 0) and (0, -1). Figure
10 presents the family of the yield-loci according to the Schleicher-Stassi criterion when
normalized to the same yield stress in simple compression. It is clear from this figure
that the ellipses for R=1.0 and R=E are equal. Contrariwise, Fig. 11 which presents a
similar family of yield loci, but for the same yield stress in simple tension, contains
ellipses, whose sizes increase progressively as R is increasing, but all ellipses pass
through the points (1, 0) and (0, 1) in the 0,/0,;, 0,/0,, principal stress space.
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Comparing the yield loci resulting from the two models and the experimental
data available for various materials it may be concluded that, whereas the Schleicher-
Stassi criterion corroborates satisfactorily the existing experimental evidence with
various materials, the Nadai-Bauwens-Sternstein criterion deviates significantly,
especially in the critical compression-compression quadrant.

Furthermore, a noticeable difference between the two types of criteria exists,
which influences considerably the reliability of their results. Indeed, the Nadai-
Bauwens-Sternstein failure criterion, derived from the conical criterion, as it is
expressed by relation (28), considers an algebraic addition of stresses, which are not
collinear. The octahedral shear stress, T, lies always on the deviatoric plane, whereas
the hydrostatic component, p, is always normal to this plane. Therefore, any
algebraic addition of these stresses is meaningless. Their addition is explained if we
consider from relation (15) that only the component of octahedral shear stress
multiplied by the ctg a becomes collinear to o, -stress and therefore it can be added to
it. On the contrary, addition of the terms in Eq.(32) is legitimate, since these terms
express energy components, which are scalar quantities. This is another reason to
consider this criterion and therefore the paraboloid of revolution criterion, as a
reliable criterion describing satisfactorily the failure mode of engineering substances.

2.4 The void-formation process and its influence to failure

It has been lately shown that the influence of the hydrostatic component of stresses
on yielding is directly related to the mechanism of local void nucleation and growth in
regions of high-concentration. Therefore, the void nucleation and development is
followed by a bulk dilatancy, or, inversely, in materials containing intitialy voids, due to
their structure, a void closure is developed during volume contraction. Both procedures
have a result to change drastically the yield behaviour of the material.

Many models have been recently introduced, which are based on the
development of voids and their influence on the yield criterion of the materials. The
McClintock model [27] assumes that a mechanism of localization of deformation,
which starts from some discontinuity of the substance (macrovoid, grain boundary,
crack) is developed along within a narrow shear band, due to the progressive
reduction of hardening of the material as the loading of the material along a zone
ahead of the dincontinuity increases, because of the progressive softening of the
material by the increasing porosity at the dincontinuity. Then, the material along this
zone is damaged to such an extent that microvoids begin to appear with increasing
load. Further loading induces the formation of a population of voids, usually in an
enclave, which ultimately coalesces with its neighbour void concentrations and
produces a propagation of the discontinuity.

This process is preceded by an incubation period for cavity nucleation, which is
always short, followed by a rapid development and spreading out of the void zone.
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Fig. 10 - The family of the strength-differential modiefied yield criteria with R varying
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Fig.11 - The family of the strength-differential modiefied yield criteria with R varying
between unity and R=2.0, for the same yield-stress in uniaxial tension in the (0,1)-plane.
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Thus, while the short period of incubation of voids is a transitional one and it does
not influence directly the mode of plastic spreading, the period of cavity
nucleation plays an important role to the subsequent development of regional
yielding.

On the other hand, the thickness variation is another important factor because
the hydrostatic component of stress, 0,,/3, and especially the intermediate principal
stress, influences the fracture strain. McClintock [27] has shown that the three
principal stresses should be tensile for maximum void growth. If both transverse
stresses, or only one of them is tensile, this state of stress creates a big difference,
since the role of the intermediate principal stress is more important for plane stress
conditions, than the value of the mean-normal stress.

Experimental evidence with scanning electron microscopy yields ample proof
of the validity of the principle of the influence of void-nucleation and coalescence to
the mode of yielding of all materials indepedently of their brittleness or ductility.
Figure 12 presents some convincing experimental evidence for the initiation and
development of voids around a crack in polycarbonate tensile specimens. In this
figure four cases of real cracks are shown, where the cracks subtend angles 6 with the
direction of application of the external tensile load varying between 6=90° and 15°.
The plastic zones, were detected by the microcracking of the 100A° aluminium
coating, which covers the specimens. The plastic zones and their geometry are
obvious from these figures where the cracking of the coating presents families of
principal strain trajectories.

Assuming that failure occurs at some critical void volume, f., the constitutive
relations according to a model developed by Gurson [28] make use of a yield
condition of the form ®(o,, o,, )=0 where o, is the average macroscopic Cauchy
stress-tensor, o, is the equivalent tensile flow stress, representing the actual
macroscopic stress-state in the matrix material, and f is the current void volume-
fraction.

For some loading level, when a certain quantity of cavities has already

nucleated, they elongate along the major tensile axis, as the loading is increased, so
that neighbouring voids coalesce when their length approaches the order of
magnitude of their spacing [29].
When necking is established between ligaments, the straining of the specimen is no
more uniform and the stress-carrying capacity of its cross-section decreases rapidly,
so that the average microscopic stress o, decays considerably. In order to take into
account this decay, the void-volume-fraction notion is introduced in the model, so
that this volume reduction takes care of the local decay of the microscopic stresses.

Theocaris [30] studied models of tensile polycarbonate specimens of various
thicknesses containing pairs of equidiametral holes appertaining to arrays of equally
spaced performations, taking the place of neighbour microvoids in the material. The
thickness reduction in the intercenter zone between holes, as well as the stress
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distribution around them was evaluated by using the method of reflected caustics and
the plotting of a rectilinear surface graph-recorder [30].

In the first place the reduction of thickness of the specimens in the in-between
void zones for plane-stress and plane-strain conditions was studied as a function of
the angle 0 between the intercenter line of neighbouring voids and the loading axis of
the specimen.

Figure 13 presents the percentage thickness reduction of specimens at the
zones of the inner and outer maxima of plastic deformations for various thicknesses
w of the specimens tested at different angles 6 of orientation of the holes for tensile
loading levels just below the yield limit. It is clear from this and similar figures
given in ref.[30], that for typically plane-stress specimens (thickness below w=1.5
mm) the plastic maxima are veryhigh for all angles 6, whereas, for prevailing plane-
strain conditions (w=9.5 mm), these maxima are depending on angle 6 and they are
very low.

Figure 14 presents another aspect of the amounts of plasticity in the outer squid-
like, plastic zones near voids, by plotting the real maximum values of outer plastic
enclaves at a distance 0.5 mm from the rims of the holes, versus the angle of
orientation, 0, of the holes for different parametric values of the thickness of the
specimens. These maximum-values are much higher than the corresponding relative
maxima percentage- depths, appearing at the rims of the holes and presented in
Fig.12. Although all specimens were loaded with identical overall tensile stresses at
infinity, the shapes, forms and sizes of the plastic zones are different, depending on
the particular characteristics of each configuration of the holes. Again the typical
influence, either of the thickness of the specimens, or the angle 0 is clearly demon-
strated. The method of reflected caustics was used for the detection and evaluation of
the plastic zones developed in the vicinity of the holes. The principle of the method
and the experimental set-up are fully described in ref. [31].

Fig.15 presents a series of photographs of the caustics formed along the plastic
zones, developed either along the ligament between the adjacent holes, or outside this
ligament-zone, for various angles 6 of the orientation of the two holes.

It may be immediately observed that the plastic zones present a bottom line of
maximum contraction, which is always a sigmoid curve, intersecting the intercenter
axis at its middle. Plastic protrusions are also developed at the rims of the holes, so that
the bottom of plastic ravines are angularly displaced by an angle A, varying between
10 and 18 degrees with the respective intercenter axis, towards the loading axis.

It may be observed from these typical figures that for an angle 6 between 50 and 55
degrees, the mode of plastic deformation in the ligament between holes changes drastically.
Below 50 degrees there is always, for all specimens from plane-stress conditions (thick-
ness w=0.75x10?m) to fully plane-strain conditions (w=9.50x10°m), a plastic zone deve-
loped between holes. Above 55 degrees the plastic deformation changes mode, present-
ing plastic asymmetric zones on both sides of each hole. These squid-like plastic zones ex-
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(o) 0=90° (b) 0=45°

(d 6=152

Fig.12 - A series of scanning electron micrographs showing the plastic zones
developed around the crack-tips in polycarbonate plates containing oblique cracks
with angles 6=90°, 45°, 30° and 15°. The development of voids in these plastic zones
is obvious in some of these figures.
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Fig.13 - The percentage maximum reduction of the thickness of the specimens at the
plastic zones developed outside the intercenter zone between holes, versus the
specimen thickness for different angles of inclination of the intercenter line.

tend to different lengths, and unsymmetrically on both sides of the central part of holes,
forming an angle with the respective radial directions. This change of mode development
of the plastic enclaves around holes remains unchanged, if the thickness of the specimens
is increased, and the state of deformation changes from plane-stress to plain-strain.

From this experimental study it may be concluded that all voids, developed in
the vicinity of cracks participate in the fracture mechanism of the plate. Those, which
are oriented with angles 6 smaller than 55 deg., contribute to the failure process by
creating plastic bridges between voids, which afterwards evolute and create probable
paths of crack propagation by kinks. The voids which are forming between the holes
for angles greater than 55 deg. develop squid-like external plastic enclaves, which are
oriented almost parallely to the crack-axis and they may coalesce with neighbouring
voids. These voids also facilitate the prospective extension of the crack, since they
create transverse bridges between neighbouring voids.

This kind of deformation is developed in plates with clusters of voids under
uniaxial tensile loading at the zome of the cloud of voids. Since the elastic- and the
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Fig.14 - The percentage maximum reduction of the thickness of the specimens at the
plastic zones outside the intercenter zone between holes versus the angle of orient-
ation of the holes for different parametric values of the thickness of the specimen,
from plane-stress to plain-strain conditions.

plastic-stress fields in front of a crack, are generally biaxial for plane-stress, or
triaxial for plain strain, and in the general case, the intermediate components of
stresses in the plane of the plate contribute significantly to the mode of crack
propagation. This is achieved by providing an additional stress field of smaller
intensity, but oriented by 90 deg.to the main o, -stress field, which is participating to
the development of voids in regions, where the main stress field, because of its
orientation (0>55°), cannot create plastic ligaments between adjacent voids, provided
it is an overall tensile field. Although the experimental evidence presented in the
previous figures is based on the plastic straining of a glassy polymer, qualitatively the
same phenomena are expected to appear for crystalline metallic specimens, provided
their mode of fracture is similar. This series of results corroborates the findings by
McClintock, who has introduced the condition that the holes should remain open
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during loading and thus fracture by hole-growth occurs always after necking of a
tensile specimen [27]. Moreover, the necessity of ellipticity of the holes implies the
dependence of yielding and fracture on the mean-normal stress, and especially its
strong dependence on the intermediate principal stress.

The formation of shear bands between holes is suggesting that the link-up
mechanism between voids is dominated by shear stresses. Similar examples are reported
in ref. [32] for aluminum alloys. Examination of the fracture surface profiles in these
examples indicates that the ligaments between holes fracture occur at angles 6060 deg.
Moreover, the profiles of the substata of the plastically thinned ligaments between holes
deviate successively on both sides of the intercenter lines in the form of sigmoid curves,
a fact which is reminiscent of the respective slip-line fields and indicating a progressive
influence of the plastic deformation between adjacent voids [33].

We have described the main mechanism of ductile fracture, developed by the
McClintock-Gurson model of localization of deformation inside shear bands. These
bands are developed because of the softening process of the material, by increasing
its porosity due to void growth. We may now evaluate, by scanning electron micro-
scopy, this extent of this porous region.

For this purpose standand 1 mm thick dogbone specimens, made of
polycarbonate (PC), suitable for insertion in the loading chamber of the scanning
electron-microscope, were prepared and duly coated to reflect the electron bundle
impinging at an angle on their surface. Holes were developed in the plastic zone
when the tensile load was slowly increasing under isothermal conditions in the
loading chamber of microscope. A number of holes started to develop on the surface
and very rapidly tended asymptotically to a limiting population of holes in the plastic
zone for impending development of a kink in the crack. A typical curve of the
increase of the void surface, versus applied tensile stress is given by the graph of
Fig.16. The limiting stress of 5x10 N/m? applied to the specimen was at the threshold
of crack initiation. Similar curves have been given by Gurson in his Fig.3 of ref. [34].

Figure 17 presents a series of electron-micrographs, taken in a z-modulation
arrangement of the instrument, which indicate the topography of the plastic zones
around the progressing crack tip and the position and size of the voids developed in
this zone. It is clear from this series of photographs that, at the beginning, a small
number of surface voids are developed. As the loading is increasing, the number of
voids increases rapidly to some limit and simultaneously their depth is increased
considerably, especially at the vicinity of the tip and the flanks of the crack. Their
shape on the lateral faces of the specimen is approximately circular, tending to
elliptic. When they penetrate inside the specimen they take conical forms. This is a
clear indication that inside the specimen in the plane-strain zone the void-density is
drastically reduced. Then, the void distribution, based on calculations of the surface-
void population, constitutes an upper limit. The real void population should be
certainly smaller. Then, the value of void volume density calculated by counting the
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number at the average surface of the void should be reduced. The void volume-
density f,,, calculated on the surface, at the limit load was found to be f, , =0.014. This
is reduced to :

f=0.010 (40)

2.5 The Gurson-Theocaris failure criterion based on void formation and
coalescence

A failure criterion based on the McClintock-Gurson model, describing failures
by void evolution and coalescence, was correlated with the paraboloid of revolution
criterion and in this way was totally and safely defined.

The McClintock-Gurson failure model [27,28], based on a description of failure
void nucleation and coalescence for the initiation and propagation of cracks in a
material, is expressed by a yield condition, which is based on an upper-bound rigid-
plastic solution for spherically symmetric deformations, applied around a spherical
inclusion. This condition is expressed by :

02 + 2q,fo,2ch(q,0,,/20,)-(1+q,f2)0, 2= (41)

where 0, is, as usual, the macroscopic effective Mises stress, given by 0,2=1/2 8;8;» With
s, the deviatoric components of stresses, whereas o0,,/3 is the hydrostatic stress.

While Gurson assumed values for the constants q,(i=1,2,3) given by q,= q,=
g,=1, it was found by Tvergaard [35] that a better fitting of results can be achieved,
when the influence of neighbouring voids to a central pair of voids is considered,
for periodically arranged cylindrical voids in a matrix. If this influence is taken
into account in a continuum model without initial voids, these constants should

take the values :
L=155; q,=1.0 and q,=q,~=2,25 42)

Moreover, 0,, is the equivalent tensile flow stress, representing the actual macroscopic
stress state in the voided matrix material, disregarding local stress concentrations, and f
is the current void volume-fraction. Quantity f is the volume fraction of small-scale
voids, created between the larger voids. At the beginning of loading f is taken equal to
zero and, as the loading is increasing, the quantity f is increasing from zero to provided
that the material is subjected to a state of stress with tensile stresses predominant.
Moreover, it is reasonable to accept that for an initially compact material, which is
subjected to a triaxial compression state of stress there is only an insignificant increase
of the nucleation and development of voids. Therefore, for a state of plane stress with
0,=0,=-0 and 0,=0 the values of f must remain equal to zero.
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Fig.15 - Series of photographs of reflected caustics developed at the intercenter zone
and the outer neighbourhood of two interacting holes lying inside the plastic zone
developed around the trip of a crack for various orientations of their intercenter axis.
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Fig.16 - The evolution of the volume void-fraction, f, expressed as the ratio of the
volume surface, f, covered by voids, normalized to the size of the plastic zone i
around the crack tip, versus the externally applied o-stress of a cracked specmen
made of PC.



37

ON A GENERAL THEORY OF FAILURE FOR THE ANISOTROPIC MATTER

"uswoads papeo] A[guiseanur ue jo dn yovr Y1 punore ssuoz dnseid sy ur padofaA3p sproa jo uonendod
a1 Zunesipur pue ‘snyeredde oy Jo JuswoSueLe UOLB[MPOUI-Z YA usYe) ‘sydeISoronu uoxnos[s Juruuess jo soras V- LTS

00T X ©) 00T X (@ 00T X (0)




38 IMPACMATEIAI THE AKAAHMIAZ AOHNQN

Since all semi-analytic or empirical relations evaluating the parameter f fail to
yield reliable results along the whole domain of the principal stress plane for plane-
stress conditions, we shall try to evaluate the variation of this parameter on data
based on the paraboloid failure criterion. This is because large experimental evidence
indicates the validity of this criterion for the whole spectrum of ductility or brittleness
of materials [42-71].

In order to completely define the criterion of relation (41) it is necessary to
evaluate the o, -stress. The o, -equivalent tensile flow stress of the voidless matrix
material is defined by assuming that in the compression-compression zone of loading
with lo I=lo,l, the yield stress of the material corresponds to and gives the o, -stress.
Then, for various values of the strength differential factor, R, we evaluate the
respective o, -stress for the points of the respective loci where (-0,)=(-0,). Figure 18
presents the variation of the o, -stress versus the strength differential factor, R, in the
interval between R=1.00 (complete ductility) and R=6.00 (high brittleness). This
curve appears to be a straight line.
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Fig.18 - The variation of the o_-equivalent tensile flow stress in the matrix material,
disregarding local stress variations due to voids, versus the strength-differential
parameter, R, for a series of materials from ductile (RO=1) to brittle ones (R>5.0).

In order now to evaluate the variation of the void-volume fraction at the
initiation of yielding for any combination of the components of stresses in the (o,
0,)-plane we define the particular value of R for the material. For the paraboloid
failure criterion assumed as a generalized failure criterion we introduce in it the
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particular value of R into its plane-stress relationship expressed in polar co-ordinates
(0,9), which takes the form :

Q%(1-5in26/2)+0,(R-1)0(1+sin26)”=R 0,2 43)

Solving relation (43) for parametric values of 0, varying between zero and 27 we
define the values of @, corresponding to each value of the polar angle 6 and from
these values of @ the corresponding values of the o- and 0,-components of stresses
for yielding or failure (0,=0cos0, 0,=0sin0).

Introducing now the pairs of stresses corresponding to each value of 6 and @ into
Eq.(41) we obtain a relationship between o, and f. For the value of ¢, corresponding
to the respective value of R, defined from graph of Fig.18, and limiting ourselves to
solutions for positive f’s we derive from Eq.(41) a relationship f=@(0) of the variation
of the void-volume fraction at the initiation of yielding versus the polar angle 6.

Figure 19 presents the variation of the void-volume fraction for initiation of yield
or failure, versus the polar angle 0 in the (0,, 0,)-stress plane, for values of the
strength differential factor R varying between R=1.00, corresponding to perfect
ductility, and R=2.00 for quasi-brittle materials.

It is clear from this figure that, for R=1.00, the f=@(0) curve is degenerated into
one point coinciding with the origin of co-ordinates in the (0,, 0,)-plane. For values of
R>1.00 cusp-like curves are developed presenting a zero value for 6=5m/2. Indeed, for
this point, which corresponds to a compression-compression state of stress the void
formation should be equal to zero. On the other hand, the state of maximum void
formation appears at ©=m/4, where 0,= 0, and both are positive, thus increasing
isotropically the size of voids without distorting their shape.

Moreover, there are zones, where both principal stresses are negative and,
contrariwise to what it was believe up-to-now, voids may develop under such modes
of stressing of the elements. However, these lobes of both negative principal stresses
are limited zones in the f=@(0) diagrams, and they increase in size, as R, and therefore
the brittleness is increasing.

Whereas all loci of f=@(0) corresponding to initial yield present a cusp point,
coinciding with the origin of the (o,, 0,)-coordinates, failures developed beyong the
initial yielding, that is for higher values of o than the o, °value for initiation of
yielding, correspond to f=@(0) curves, which, although they maintain their overall
shape as quasi-cardioid curves, they present blunted cusps, which no more start from
the origin of the coordinates, but recede from this point, as the values of the g,_-stress
increase.

Figure 20 presents the variation of the void-volume fraction, f, around a crack
tip, versus the polar angle 0 in the (0,, 0,)-plane for R=1.30 and for initial yielding
0,=1.50 o,. Moreover, the subsequent extensions of yielding, corresponding to
values 0,/0,, between 1.70 and 2.50 are also traced. The shapes of cardioid-curves
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Fig.19 - The variation of the void-volume fraction for initial yielding, f, around a
crack tip, versus the polar angle 0 in the (0,, 0,)-plane for parametric values of the
strength-differential parameter, R, between R=1.0 (ductile materials) and R=2.00
(semibrittle materials).

indicate that, as plasticity is progressing, negative values for both principal o,- and o,-
stresses may develop voids and thus may participate in the plastic deformation of the
solid by void nucleation and overall dilatation of the zone surrounding the crack tip.

In this chapter yield and failure criteria for initially isotropic bodies were
examined by using an inductive procedure of presenting the various forms of primative
yield criteria, as they appeared chronologically in the literature. This mode of
presentation exhibits the advantage to follow the evolution in time of the concept of
yielding and failure of materials used in constructions. However, it is an imperative
need for more sophisticated criteria, which take into consideration, in a rational and
equilibrated manner, the influence of the various stress- and strain-components, on the
formulation of a realistic failure criterion which, based on a sound phenomenological
framework, can define a mathematical model, which can anticipate correctly and
accurately failure for any combination of loading of any kind of material. The
universality of this criterion constitutes an additional proof of its soundness.

The advent of modern materials with high anisotropic and eventual non-
homogeneous properties compels and enforces on the necessity of developing more
sophisticated forms of criteria, which are designed to fulfill fundamental require-
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Fig.20 - The variation of the void-volume fraction, f, around a crack-tip, versus the
polar angle 6 in the (0,, 0,)-plane for R=1.30 and various steps of loading
corresponding to o, between ¢, /0,=1.50 and o, /0,==2.50.
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ments, such as the invariancy of the coordinate axes, combined with the flexibility to
yield failure envelopes, which are in agreement with accepted failure mechanisms.
Such modern failure criteria are based on simple form-invariant expressions of tensor
polynomial functions.

3. CRITERIA BASED ON FAILURE TENSOR POLYNOMIALS FOR
THE ORTHOTROPIC BODIES

3.1 Introduction

Suitable failure criteria for anisotropic materials should be again phenomenolo-
gical and therefore their mathematical models should fulfill the requirements to be
invariant to the coordinate system to which they are referred, to be flexible to model
any yield and failure envelope, to be single sheet surfaces, in order to yield a unique
solution for each simple loading path and to be unambiguously defined along the
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principal strength directions of the materials. It is obvious from these requirements
that there cannot be a unique formulation of such criteria, and any criterion may be
proved valid, provided that its validity can be tested by extensive experimental
evidence covering all posibilities of combined loading paths.

However, it is a common practive even for the simplest and elementary criteria
to select some convenient shape for a yield locus, which must satisfy beforehand
some basic physical law, such as the conservation of energy principle, and then verify
that this shape is in agreement with the experimental results.

Since uniqueness of conversion between expressions for the failure criterion is
required, it should be assumed that the material possesses a strain energy function up
to an incipient discontinuity. Therefore, functions used for initialy isotropic materials
should be symmetric in the principal stresses, and there is no need to specify the
phase relationship between principal stress and material strength directions.
However, neither of these assumptions is valid for anisotropic materials.

The best way to establish a yield and failure criterion for anisotropic bodies is to
extend by induction, criteria for isotropic materials to anisotropic ones keeping in
mind not to violate these principles.

The introduction of the influence of the strength differential effect on the yield
criterion (expressed as the ratio of yield stress in compression and the respective
yield stress in tension along the principal direction considered) has resulted in a
change to the already established classical yield criteria [2,5] and resulted to a
destruction of the invariancy of the criteria in the stress space. Thus, the acceptance
of the invariancy of any failure criterion may be considered as a tribute paid to the
objective of simplicity of results and a facility of calculations. On the other hand,
neglect of acceptance of the strength differential effect introduces large errors
especially with materials whose strength differential parameters take large values and
they are tested outside the first tension-tension quadrant of the failure locus
expressed in the principal stress space.

On the other hand, introduction of the influence of the strength differential
effect into the failure criterion heals the breach between theoretical expression of the
failure criterion and the respective experimental results, but introduces
complications in the use of the criterion. Indeed, in order to take into consideration
the strength differential effect it is necessary to introduce into the criterion
expressions containing linear terms of stresses. This implies that the invariancy of the
failure locus is destroyed and it becomes imperative to take into consideration the
relative position of the principal strength axes of the material with respect to the
principal stress axes developed by the external loading mode of the material. Then,
each test of either of these principal frames should be connected to the other by the
well known relations, expressed by the rotation matrices, which yield the proper
mode of loading of the material relative to the principal strength directions of the

materials.



ON A GENERAL THEORY OF FAILURE FOR THE ANISOTROPIC MATTER 43

However, with the advent of new strongly anisotropic materials it became
imperative to remodel yield and failure criteria, introducing into them the influence
of the strength differential effects. Many new criteria were developed, the most
important of which are the Hoffman [38], the Tsai-Wu tensor failure polynomial
(TEP) criterion [39] and the elliptic paraboloid failure criterion (EPEC) [42-50].

The tensor polynomial criterion constitutes a flexible and mathematically
elegant version of Hill’s criterion [41] for anisotropic solids, which is formulated in
terms of the Cartesian components of the stress tensor. It is represented by
hypersurfaces in a six-dimensionsal stress space, a drawback which makes the
criterion impossible to be readily visualized geometrically in the physical stress
space. Only plane sections of this hypersurface can be drawn. These plane sections
represent quadratic surfaces in the (o, 0, T,) parametric space, which do not
correspond to the strict meaning of a failure criterion, defining the limits of loading
of a material beyond which the material yields or fails to resist as previously. Indeed,
these subspaces represent nomograms for failure, indicating at which limit a material
fails for a paticular combination of the component o,, 0,, T, of the external loading.
Thus, this criterion plays the role of the well known Mohr diagrams for the limiting
values of the components of stresses at failure. Furthermore, these subspaces do not
provide a direct interrelation between the principal directions of the externally
imposed loading and the material strength directions, a drawback which causes the
necessity of meticulous and delicate experiments for its definition.

The Hoffman criterion [38] constitutes a simple and well defined failure
criterion taking care of the strength differential phenomena of the materials in the
correct way. The criterion resulted from Hill’s quadratic form by simply adding to it
the missing linear terms of normal stresses. It yields satisfactory results concerning
the strength orientation properties of the materials, as well as the prediction of plane-
stress failure loci. However, since the establishment of this criterion is only
empirical, no attempt was made to interrelate the properties of the surfaces
describing the criterion with the material properties at failure. Although Hoffman in
his concluding remarks [38] states that “no physical significance is to be attributed to
this fracture condition neither can it be considered complete”, a deeper study of the
properties of the failure surface anticipated by this criterion under certain stability
conditions proves the contrary, that there is a sound physical significance for this
fracture condition which is also a complete and a general one. This misunderstanding
was ensued since Hoffman presumably was interested just to complete the second
degree polynomial introduced by Hill for his criterion [38].

It has been established in the previous chapter that the failure locus for isotropic
materials presenting the strength differential effect (SDE) is a paraboloid of
revolution, which has an axis of symmetry coinciding with the hydrostatic axis
0,=0,=0,. The intersections of the paraboloid of revolution failure surface with the
principal stress axes 0, 0,, 0, yield failure stresses o, or 0. depending on which part
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of the stress axis (positive or negative) is piercing the paraboloid. It was further
shown that all well known experimental evidence with such materials fits excellently
the yield loci derived by the intersections of this failure surface and the respective
stress planes considered, thus supporting strongly the validity and the efficiency of
this criterion.

The paraboloid of revolution failure surface was extended to encompass the case
of orthotropic materials. For the category of transversely isotropic materials the
paraboloid of revolution becomes an elliptic paraboloid, (EPFS), with its axis of sym-
metry now parallel to the hydrostatic axis, displaced from it by a quantity depending
exclusively on the geometric mean of the failure stresses in tension and compression
along the strong direction of the material, as well as on the difference of the SDE
along the strong and weak directions. Moreover, all intersections of the paraboloid
by planes parallel either to the deviatoric plane, or to the principal stress planes, are
ellipses, thus guaranteeing that all plane failure loci are closed curves, except the
intersections of the EPFS by the principal diagonal planes [42-67].

The theory concerning the EPFS was further extended to encompass the general
orthotropic material [68-71]. It was shown that even for the general orthotropic mate-
rial the failure locus is an elliptic paraboloid with an axis of symmetry that remains
parallel to the hydrostatic axis. While this axis for transversely isotropic materials lies
on the principal diagonal plane (0,,8,,) defined by the strong principal axis o, and the
bisector 9,, of the angle formed by the 0,- and 0,-axes on the transverse plane, for
orthotropic materials, the axis of symmetry lies outside this plane, whereas the elliptic
paraboloid presents some angular displacement about this axis, so that its planes of
symmetry intersect the principal diagonal planes of the stress space. The same
features appear for transversely isotropic materials when the material is off-axis
loaded, so that the principal strength axes of the material subtend an arbitrary angle
with the principal directions of external loading. It was then established that the
influence of the anisotropy of the material and its strength differential effect are
intertwined, and mutually influence the structure of the failure locus of an anisotropic
material. By using experimental data of similar or related materials an attempt was
made to disclose these intimate relationships between the anisotropy of a material and
its strength differential effect.

3.2 Historical Review

Failure criteria are based on Hill’s well known theory for anisotropic metals
[41]. Hill’s criterion is based on Mises’ first attempt to formulate yielding and failure
for anisotropic solids [72]. However, Hill’s criterion neglects the effect of the
strength differences in tension and compression, which are apparent to all solids. A
progress in the criteria for anisotropic bodies was done by Hoffman’s criterion,
which presents a further improvement on Hill’s criterion by incorporating the
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strength differential effect. This was achieved by adding the linear terms in the
quadratic expression of Hill’s criterion [38]. However, this addition resulted in a
destruction of the tensorial invariancy of Hill’s criterion, but gained the advantage of
describing correctly the yielding behavior of real engineering materials. Then, the old
generation of yield criteria sacrificed the exactness to the altar of simplicity and
convenience of using the advantages of the tensor invariancy and thus abolishing the
inclusion in these criteria of important universal phenomena of the mechanical
behavior of the materials, such as the Bauschinger effect and others based on the
strength differential effect.

From these criteria only the Coulomb, or internal friction, yield and fracture
criterion was incorporating the strength differential effect, as early as from 1773 [7]
by introducing in the criterion the influence of the first stress invariant and thus
relating the dilatational component of energy to the distortional component and re-
cognizing its importance in the mode of yielding of the materials. This was imperat-
ive since the Coulomb criterion was called to describe a fracture criterion for brittle
materials, where the strength differential parameter R takes important values and
thus influences considerably the yielding behavior of such materials.

Overpassing the typical yield and failure criteria, which neglect the influence of
the first stress invariant and are based on the approximation of stress invariancy, we
review the two basic criteria developed recently which are convenient for anisotropic
substances. This remodelling of the failure criteria was mainly based on Hill’s criterion
for anisotropic materials [41] and its modification by Hoffman’s criterion [38].

These criteria which are based on energy balance considerations are mainly the
Tsai-Wu tensor failure polynomial (TFP) [39] and the elliptic paraboloid failure surface
[45]. Both are variations of the same basic principle and they are described by quadric
surfaces thus presenting a fundamental property to comply with basic physical laws.

The tensor polynomial criterion constitutes a flexible and mathematically elegant
version of a criterion formulated by means of a series of Cartesian components of the
stress tensors. It is represented by hypersurfaces in the six-dimensional stress space,
which is impossible to be conveniently visualized geometrically in the physical stress
space. Only plane sections of this hypersurface were possible to be studied, which re-
present quadric surfaces in the Cartesian (0,, 0,, T, )-parametric space. However, even
these subspaces do not yield a direct interrelation between the externally applied load
to the body and the material strength directions. This constitutes a drawback of the
criterion necessitating meticulous and delicate experiments and an extensive study
based on Weibull’s distribution theory, in order to define with certitude the appro-
priate values of the characteristic parameters defining this failure locus. However, this
criterion is an excellent instrument for evaluating with high accuracy the influence of
the variation of one failure component to the values of the remaining ones. Thus, the
tensor polynomial criterion constitutes for the anisotropic bodies what the Mohr

circles yield graphically for the isotropic materials.
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The elliptic paraboloid failure surface (EPFS) as a failure criterion was introduced
by the author [42]-[72] first to describe the most general failure surface for isotropic
materials [40]. It was shown that for isotropic materials presenting the strength
differential effect, defined by the strength differential parameter R=0,./0,,, where 0,
and o, are the yield stress in compression and tension respectively, the EPFS is reduced
to a paraboloid of revolution surface, as this which was described by Tschoegl [10].

The paraboloid of revolution failure surface becomes an elliptic paraboloid
surface for orthotropic materials, where six strength parameters, three for tension
and three for compression along the principal strength axes of the material define
three different strength differential parameters R,=0,/0,,, R,=0,,/0,, and R =0,/0,.
For transversely isotropic materials, where R =R, (the 0,-axis is assumed as the
strong axis of the transversely isotropic material) the failure surface changes to an
elliptic paraboloid surface. It has been shown that the elliptic paraboloid presents
some symmetry with respect to the principal strength axes having as plane of
symmetry the principal diagonal plane (0,,0,,), where o, is the strong axis and 9,, is
the bisector of the right angle (0,00,) along the plane of isotropy. This symmetry
results in a simplification of the expressions for the various plane sections of the
surface by characteristic planes, as they are the principal strength planes (0,,0,),
(0,,0,), (0,,0,) the deviatoric plane and its parallel planes (0,+0,+0,)=k (k=0,1,2, ...,n)
and the principal diagonal plane (0,,0,,).

A property, which is maintained in the isotropic, the transversely isotropic, as
well in the orthotropic materials, is that the axis of symmetry of the failure surface
(either a paraboloid of revolution, or an elliptic paraboloid) coincides or is parallel to
the hydrostatic axis in the stress space, besides the fact that all failure surfaces are
paraboloids. This comes from the fact that independently of the isotropy or
anisotropy of the material the consequences from an arbitrary external hydrostatic
loading (0,=0,=0,) should be independent of direction and therefore the hydrostatic
axis should be an axis of symmetry of the failure surface.

3.3 Failure criteria based on tensor polynomials

The isotropic failure theory, generalized to cover also anisotropic failure, is
based on the hypothesis, which is largely supported experimentally [75], that isotropic
materials can withstand infinitely large amounts of hydrostatic compression (or
tension) without failing. Thus, a safe loading path exists in the 6D-Euclidean space of
symmetric stress tensors which, for isotropic solids, coincides with the direction of the
2" rank spherical tensor, pl(ueR"). It must be clearly stated that only either
hydrostatic compression constitutes a safe triaxial loading path and not hydrostatic
tension, or the inverse, under which materials fail always [73]. Then, the failure
criterion depends on the hydrostatic pressure and an indirect proof of it, is the strength
differential effect manifested, more or less, by every solid. The above hypothesis,
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graphically represented in the 3D principal stress space, is satisfactorily interpreted by
an isotropic failure surface, which is a paraboloid of revolution with the hydrostatic
axis 0,=0,=0,, as a symmetry axis, whereas the open end of the paraboloid is oriented
towards the direction of hydrostatic compression, or tension [11].

Such a generalization of these concepts for failure of orthotropic solids was
undertaken in refs.[42-50], by means of the geometric interpretation of the failure
surface in the principal stress space. It was shown that the failure surface for
orthotropic materials is an elliptic paraboloid with a symmetry axis parallel to the
hydrostatic axis and displaced from the origin of the coordinate system by an amount
depending on the degree of strength anisotropy of the material. The failure condition
expressed in terms of principal stress components, o,, was shown to have the general
form of the quadric surface equation, that is :

Hi0,0; + higieilis Qoo diusind (44)

ij i

where the tensor H; and the vector h; are appropriately defined in terms of the basic
strength properties of the material. Such a formulation of the anisotropic failure
criterion is restricted to a material symmetry up to orthotropy at most, and it is also
confined for loading cases for which principal stress axes coincide with material
symmetry axes. For all other loading cases, which most commonly arise in fiber
composite laminates, eq.(44) must be extended [68-71].

Then, the quadric surface equation (44), if extended in terms of the Cartesian
components of the stress tensor, takes the following tensorial expression :

fo)=ccH' 6+h-6-1=0 (45)

where H and h denote 4™ and 2"-rank failure tensors respectively.

The postulate upon which the anisotropic failure criterion of eq.(45) is
formulated stipulates the existence of a safe triaxial loading path, which means that
the failure hypersurface must not be intersected by some stress-tensor direction.
While for isotropic materials it is generally accepted and experimentally proved that
the hydrostatic loading constitutes safe triaxial loading path, for anisotropic mate-
rials this safe triaxial loading path is parallely displaced by a well defined constant
amount of strain energy taking care of the influence of anisotropy, which makes the
safe axis to be displaced by a well-defined invariant amount of stress, depending on
the anisotropy of the material and expressed by the distance between the hydrostatic
axis and the axis of symmetry of the hypersurface.

The values of the failure function f(e) for the initially anisotropic elastic solid with
respect to the tensor ¢ must be path independent as long as the material does not fail
under the loading mode ¢. Since the stress tensor is considered symmetric, path
independence of function f(e) is guaranteed by the symmetric failure tensors H and h.



48 IMPACMATEIAI THE AKAAHMIAS AOHNQN

Moreover, the tensorial character of function f(¢) implies the form-invariancy,
of €q.(45) and its holding for any coordinate system transformation. Besides, the
linear polynomial term, h.e, accounts for the strength differential effect and thus,
€q.(45), after a proper determination of failure tensors H and h, may constitute a
valid generalization of the paraboloidal failure surface criterion for anisotropic solids.

The form of eq.(45) does not impose any restriction on the symmetry class of the
anisotropic medium and thus the 4* rank failure tensor H may possess at most 21
independent components. Symmetry properties of tensor H follow those of elastic
compliance 4*-rank tensor S. The 2m-rank failure tensor, h, may have, in general, six
independent components, whereas, for specially orthotropic media, or of increased
symmetry, tensor h becomes axisymmetric degenerating to a spherical tensor for the
isotropic medium.

Inner products, denoted by dots, transform relation (45) in the natural Cartesian
notation as follows :

f(o,) = Hy,0,0,, + h0, - 1 (@ dakoilimalse. 6563) (46)
whereas the same relation in contracted Cartesian notation is given by :

.00, +ho, -1 0, ]=1, .. 0) a7

el

If(o) = H

The necessary and sufficient condition for the failure hypersurface of eq.(45) to be
convex and open-ended is that tensor H must be positive semi-infinite, which means that:

6 H62>0, (Vo0 (48)

Then, a necessary condition to be satisfied by the contracted components of the
4t-rank tensor H is given by :

HH-H2>0 (§=1135756) (49)

ii™ 7jj

The convexity of the failure hypersurface, together with its open end along a
triaxial path of normal stresses, postulates which are assured by the validity of the
inequality (48), implies that any single stress component leads to failure at a critical
value o,, which is defined by :

Hiookidlog: t=064@=155.,6) (50)

with the minus (-) sign holding for the opposite loading.

By solving the twelve equations (50), it is derived that the strength differential
tensor, h, is completely determined together with the “main diagonal” components
of tensor H.
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Then, the normal components of the failure tensors are expressed by :
H; = 1/05,0  (i<3) 1)
h; = (1/0y,) - (1/0) = (0¢;-07) H;; (52)
whereas for shear components are given by :
H; =1/0 70y i>3)
h, = (1/04*) - (1/oy) = (0 - 04*) H;; (53)

In the above relations the repeated index convention does not apply and the o,
and o, - stresses express the tension (T) and compression (C) failure stresses in the i-
direction. Furthermore, the o *, 0, -stresses express the shear strengths, positive or
negative, in the i-plane (i > 3) and the usual contracted notation of Cartesian indices
is used, meaning, that index 4 corresponds to natural indices 23, index 5 to 13 and
index 6 to 12. For the orthotropic materials, when the coordinate system defining the
failure stresses coincides with the material symmetry directions, there is no shear-
strength differential effect, that is : 0,*= 0

Up to this point, the failure tensor components given in relations (51) to (53) may
be determined without recourse to a special phenomenological hypothesis. The
evaluation of these components is based upon standard basic requirements, common
for all anisotropic failure criteria, which can be expressed by the general form of
€q.(45). This leaves the off-diagonal components of the failure tensor H (Hij’ i#j) to
be derived according to the particular assumptions, which are different for the
various criteria.

The open end of the failure hypersurface is mathematically assured by imposing
the 4t-rank failure tensor H to have a zero eigenvalue. Moreover, the hypothesis that
hydrostatic stress is a safe loading path is further formulated mathematically by
associating the zero eigenvalue of tensor H to the 2-rank spherical tensor, 1, which
is then an eigentensor of H. The above implies that the failure hypersurface is a
generalized elliptic paraboloid with a symmetry axis parallel to the direction of the
spherical tensor, 1. Since the spherical tensor, 1, is an eigentensor of the 4%-rank
tensor H and corresponds to its zero eigenvalue, the following relation holds :

H 1=0 (54)
or equivalently :
s 55)

Hijpx
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The system of six equations (55), if expressed in contracted notation, reads as :

H,+H,+H,=0

H el =0

Hi i+ =0

H,+H, +H ;=0

H,;+H,+H,=0

Hg i+ He, + H63 =0 (56)

whereas, from the first three equations, one has :
Hy=12 = Hy - H), ([ASIR<3 Si~jZk) 57)

Relations (57) imply that the interaction failure coefficients H,,, H,, and H,, of
the elliptic paraboloid failure surface (EPFS), are interrelated with the diagonal
components, which are directly defined through relations (51) and (52) with the
basic strength data. This is a significant advantage of the EPFS-criterion, which is
not met with other similar criteria, as it is the failure tensor polynomial [75].
Indeed, all these criteria are solely based on the experimental evaluation of these
off-diagonal coefficients. However, the problem of the optimal experimental .
determination of the failure tensor components presents unsurmountable difficult-
ies, which were considered by Wu [76]. Complicated and sophisticated experi-
mental techniques were proposed, which were not generally accepted. Thus,
several researchers adopted the zeroing of the undetermined 4t-rank failure tensor
components, which in general assume very small values. This arbitrary choice
altered drastically the concepts of the criterion proposed by Tsai and Wu [75] and
the resulting failure condition was shown to yield erroneous predictions when
compared with 3D-experimental failure data [77]. Only in the various versions of
the EPFS-criterion for orthotropic materials, the non-zero components of the
failure tensors H and h are completely determined in terms of the basic strength
data through egs. (51) to (53) and (55) and, thus, the criterion can be directly used,
without further need of additional complicated experimental data.

3.4 The EPFS-criterion for the orthotropic material

For the complete definition of the elliptic paraboloid failure surface it is
required to visualize a series of its characteristic intersections. Indeed, since
intersections by the principal stress planes (o, 0,,), (i=1,2,3) constist of superficial
slices of this failure solid, these intersections may be confusive, since respective
intersections belonging to different versions of the criterion present eventually only
imperseptible differences. Then, it is well established that for the experimental
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verification of the postulates of any failure criterion it does not suffice to compare its
predictions with experimental results from two-dimensional failure tests. Further
comparison with triaxial failure tests is needed. As more convenient 3D-failure tests
should be considered a superposition of hydrostatic compression on uniaxial tension
or compression. Such tests correspond to loading modes corresponding to arbitrary
intersections of the paraboloid.

For the complete study of the elliptic paraboloid surface four types of intersect-
ions are deemed as necessary. These intersections are :

i) The principal diagonal intersections defined by planes containing one principal
stress axis and the bisector of the right angle formed by the remaining principal axes.
ii) The deviatoric m-plane which is normal to the hydrostatic axis.

iii) The principal stress plane intersections, which are convenient for the study of the
mechanical properties of the anisotropic body when thin plates of the material under
plane-stress conditions are to be studied.

iv) The intersections of the EPFS-surface by planes defined by the axis of symmetry
of the paraboloid and either principal axis of the ellipse corresponding to the
deviatoric plane.

The elliptic paraboloid failure surface for the general orthotropic material,
satisfying all the properties previously described, is expressed as follows in the
(0,,0,,0,)-principal stress space, by a complete polynomial of the second degree,
where the o,-principal direction corresponds to the strongest direction [68] :

H 1 1012+H22022+H33032+(H33'H| 1'H22)0102+(H 1 |'sz'H33)0203+(H22'H33'H1 |)0|03+
+h,0,+h,0,+h,0,=1 (58)

This second-degree polynomial, referred to the Cartesian coordinate system
Oxyz, where the Oz-axis is parallel to the hydrostatic axis and the (Oxy)-plane
coincides with the deviatoric plane with the Oy-axis lying on the (0,9,,)-principal
diagonal plane,(d,, being the bisector of the 0,00,-angle) is expressed by :

(H, +H,,+H,)x? + 3/2H,,y? + V3(H, -H,,)xy + 1/N2(h,-h,)x +
+1A6(2h,-h -h,)y + 1A3(h +h,+h,)z = 1 (59)

Figure 21 presents the mapping of the paraboloid in the principal stress space
(00,0,0,), as well as the new Cartesian coordinate systems (Oxyz) and (0”X’y”z”)
corresponding to the already defined system and the Cartesian system whose 07z”-
axis is parallel to the hydrostatic axis (0z), whereas the 0”’x”" - and 0”y” axes lie again
on the deviatoric plane but they are created by an angular displacement on the (Oxy)-
system so that the new (0”x”y”)-system coincides with the principal axes of the
elliptic intersection of the EPFS by the deviatoric plane. Then, the deviatoric plane is
defined at once by putting in relation (59) the value z=0.
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The principal diagonal intersection of the elliptic paraboloid failure surface by
the plane (0,,9,,), where 0, is the strong principal stress axis and 6,, is the bisector of
the angle 0,00, subtended by the two other principal stress-axes o, and o,. For the
general orthotropic body the equation of the intersection of the failure locus and the

(0,,0,,)-plane is given by [68] :

12(H, +H,,+2H ,)d ,2+H,,0,24V2(H ,+H,,)d,,0,+V2/2(h +h,)d,,+h,0,-1=0 (60)

Fig.21 - The elliptic paraboloid failure surface EPFS for the general orthotropic
material as it appears in the three dimensionsal (0,, 0,, 0,)-space and its connection with
the Oxyz- and 0’’x’’y’’z’’-Cartecian frames whose 0z and 0’’z’’-axes are coincident or

parallel to the hydrostatic axis.

The other two principal diagonal intersections of the EPFS-surface by the planes
(0,,9,,) and (0,,0,,) can be readily established from relation (60) by cyclic interchange
of the respective indices of the relation (60).

Figure 22 presents the three different principal diagonal intersections of the
elliptic paraboloid failure surface for a mildly anisotropic polymer the oriented
polycarbonate (PC), which was subjected to three different deformation steps in
order to become an oriented anisotropic substance (materials A, B and C).
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Expressions (58) to (60) for the elliptic paraboloid failure surface were
established by a straightforward application of the theory for second-degree one-
sheet surfaces as they have developed in analytic geometry given for example in ref.
[78]. For details of calculations deriving these relationship the reader is referred to
the extensive literature of articles by the author and his co-workers included in the

references of this study [42-71].
The intersection of the EPFS by the deviatoric plane z=z"=0 for the general

orthotropic material is given in Fig.23.
It can be shown that this intersection is also an ellipse, provided that the stability
condition for the material is satisfied. This condition is expressed by [11] :

4H,>H,, (61)

The center 0” of the ellipse is defined by the polar distance r, and the angle ,
indicated in Fig.22, which are expressed by :

X, =V2/3F {2h,(H,-H,,)+h,3H,,-H, +H,,)-h,(3H,+H, -H,,)}
(62)

y, =V6/9F {h,(5H,,-H,,-H, )+h,(5H, -H,,-H,)-2h,2H, +2H,,-H,,)}

with

F= {2(H11H22+H22H33+H33H1l)'(Hss'Hn)z'(Hl1'H22)2'(H22'H33)2

{ h,5H,,-H;;-H, )+h,SH, -H,,-H,,)-2h,2H, | +2H,,-H,,) }
tan et 62
o 3 2hy(H -Hy,))+h,3H,,-H,  +H,,)-h,3H,+H, -H,)) toed

Of great interest are anisotropic materials representing some symmetry in their
mechanical properties. These materials are particularly the so-called trans-
versely isotropic materials whose strengths in tension and compression along one
principal direction are higher or lower than their respective strengths along the two
other principal directions, along which the respective strengths are mutually equal.
For the transversely isotropic material with o ,, 0., as failure limits in tension and
compression along the strong direction of the material and 0,,=0,, 0.=0., the
respective failure limits along the transverse isotropic plane, relation (60) yielding
the shape of the (0,0,,)-intersection of the EPFS is simplified into the equation :

(H,+H,,)8,+H,,0,242\2H,,8,,0,+#V2h 8 ,+h,0,-1 = 0 (63)

Moreover, the polar distance r, representing the additional loading because of the
anisotropy of the material is given by :
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Fig.22 - The intersections of the EPFSs for the three types of oriented polycarbonate (ma-
terials A, B, C) by the principal diagonal planes (0,9,,), (0,,9,,) and (0,,0,;) respectively.
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Fig. 23 - The intersection of the EPFSs by the deviatoric plane z=z"=0 for the

orthotropic material.
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X,=0
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yo 9H33

tan Y, =8, | W,=90°

Relations (64) indicate that for the transversely isotropic materials the elliptic
section indicated in Fig.22 representing the intersection of the EPFS-surface by the
deviatoric plane is symmetric to Oy=0"y”’axis and, therefore, the principal diagonal plane
(0,9,,) is a plane of symmetry of the elliptic paraboloid surface for these materials. This
property reduces considerably the complications in evaluating the mechanical behavior
of this type of anisotropic bodies, since, in general, the abscissas X, for the orthotropic
materials are very small as compared to y, and, therefore, the approximation of an
orthotropic material by its corresponding transversely isotropic one is legitimate.

Another characteristic quantity defining the orientation of the cross section of
the EPFS by the deviatoric plane is the angle 0 of inclination of the principal axes of
the ellipse with respect to the Oxy-system (Fig.22).

This angle is given by, [43] and [45]:
0 =1/2 tan! [\/3(H22-H1l)/(2H33-H“-H22)] (65)

which, again for the transversely isotropic material, for which it is valid that H, =H,,,
becomes :

0=0° (66)

The principal semi-axes a, and a, of the elliptic intersection by the deviatoric
plane are expressed by:
12

1 1
1-——(h,-h,)x - —— (2h,-h.-h
al} 212 (h,-h,)x, 2’_6( 30,0,y &

1 2 2 2 12
5 (Hy +Hy,-Hy)+(H +Hy+H o -H Hy) -Hy Hoy-Hy H )

with x, , y, the quantities given by relations (61) and the “plus” sign in (67)

corresponding to the a -length.
For the transversely isotropic body these principal axes of the ellipse are readily

reduced to [47] :
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(68)

The ratio of the major axis 2a, to the minor axis 2a, of the elliptic intersection
expresses the ellipticity of the paraboloid and it is given by :

A = {3H,,/(4H,,-H,,) } '~ (69)

Moreover, the angle 6, subtended by the principal axes of the elliptic intersection
and the Oxy-system is given by [68] :

6,= 1/2 tan"' [V3 (H,-H,,)/(2H,,-H, -H,,)] (70)

which obviously becomes equal to zero for the transversely isotropic body, where
H,=H, .

Finally, the equation of the EPFS in the 0”x”y”z”-frame is given by :

[(Hn 1+H22+H33)+(H|12+H222+H332'H1 lez‘szHsa'HssHl|)1/2]X”2 ot

it [(Hl|"'H22"'I_133)'(I'11124'}1222'*'1_1332'1{1|I_Izz'I_Izsza'I_I:saH1l)lfz]y”2 +
+2/N3 (h,+h,+h,)z” = 242 (h -h,/3)? +
(hl'hz) [Zhs(Hl 1'sz)+h|(3H33'H 1 1'H22)’h2(3H33+H1 |+H22)]

i (71)
6 [ 2(H11H22+H22H33+H33H11) pe (H|12+H222+H332)]

Now we study the intersections of the EPFS-surface by the three principal-stress
planes (0, 0,), (0,, 0,) and (0,, 0,).

The equation expressing the elliptic intersection of the elliptic paraboloid
failure surface, represented in the principal stress space (0, 0,, 0,), by the principal
plane (0,,0,) is expressed by :
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H,02+H,,0+2H,,0,0,+h,0,+h,0,=1

(72)
The center of this ellipse is defined by its coordinates (o,,, 0,,). Figure 24

presents this intersection in the (0,.0,)-principal stress plane and the coordinates o,,,,
0,y and the angle A, of inclination of the polar radius (OM) are given by [68] :

1 1
e )_{f(h3H31‘h1H33) 2(h1H31'h3H11)}
<) VR BY

2 2
(H11H33'H31) (H11H33'H31)

(73)

A, =tan "' (h,H,,-h,H,,)/H,,(2h +h,) (74)
The system of Cartesian coordinates (M- 0,, ,), to which this ellipse is central
and symmetric, is defined by the angle 0,, expressed by :

0, = 1/2tan ' 2H, /H,,-H,,)

(75)
whereas the semi-axes a,,, and a,,, of the ellipse are given by [17] :
2 2 i
12
. (l) { i H, h,+Hysh, 2h b H,, } (76)
=3 2
S (H,)-H,,) +Hy3(4H ,-Hy,)
/z F : 12
1
i { H, hy+Hy,h, -2h by Hy,
a -l (e o 2 (77)
o2l (H,,-H,,) +Hy;(4H ,-H;,)
and
12
B 2 2
a=7{ (H“+H33)+[(H33-H“) +4H31] }
% 2. e J1R2
b=%{ (H; +Hyy)- [(H33'H11) +4H31] } (78)

The above relations for the transversely isotropic body are reduced to the following
equations :
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(h1H33+2h3H“) (2h]+h3)
Om O = " 'H,,4H, H,,) ' @H, -H, ) Y
33\ At e, 145 a3
et (h,H,,+2h,H, ) (80)
1 H33(2h]+h3)
H
e e 33 (81)
0 =fanlo -t
12 (Hll'H33)
al B ”Z}
B} = 5{ (H, 1+H33)i[(H1 ~Hss) +H33] (82)
and
12 » 5 12
e )=(_L_] 1+H11h3+H33h1+H33h1h3 83) ‘
3L a.b H,,(4H, -H,;)

It can be derived from the above theory that the elliptic paraboloid failure surface for
the general orthotropic material has its axis of symmetry parallely displaced,
relatively to the hydrostatic axis, but moving outside the principal diagonal (0,,0,,)-
plane. Only the transversely isotropic materials have their EPFSs whose axes of
symmetry lie on the (0,,0,,)-plane and therefore they are symmetric to this plane, so
that any transverse intersection of the EPFS is an ellipse whose principal axes are
parallel to the Ox- and Oy- axes.

For the orthotropic materials the respective EPFSs are angularly displaced so

that the centers of their transverse elliptic intersection lie outside the (0,,9,,)-plane
and their planes of symmetry, 07y”z” or 0”x”z” are intersecting the principal
diagonal planes along lines parallel to the hydrostatic axis, whose traces on the
deviatoric plane are points S (for the 0”y”z”-plane) different than the origin 0. The
angle 6, subtended by the planes of symmetry with the respective principal diagonal
planes is of importance and was given by relation (70).
In Figure 24 the intersection of the EPFS corresponding to an oriented poly-
carbonate material by the (0,,0,)-principal stress plane is presented. The failure
strengths in simple tension and compression of the material along the principal
directions are given in Table 1 and correspond to material A.
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a; = 39.45 MPa

2y,=57.98 MPa

7S

(Oriented PC)

0r3=65.20, 03=42.70 MPa
0,=40.20, 0,=48.60 MPa
07=35.20, 0=45.20 MPa

8, = 3025°
A, = 95.33°

Fig. 24 - The intersection of the EPFS by the (0,,0,)-principal stress plane for an orient-

ed polycarbonate.

Material A B ©

0,(MPa) 65.20 65.20 65.20
o5 42.70 42.70 42.70
O 42.20 43.60 48.10
oEs 48.60 54.00 56.30
o 35.20 35.20 35.20
o P 45.20 45.20 45.20

Table 1 - The values of the principal strengths in tension and compression for three
types of oriented polycarbonate named A, B and C.
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The coordinates of the center of the ellipse are found to be :
a,,=-3.03MPa and a,,=10.63 MPa

The polar radius r,=(0M)=11.05 MPa while the center M of the ellipse is lying in the
second quadrant of the (0,, 0,)-plane. The principal semi-axes of the elliptic
intersection are given by :

a,,=3945MPa and a,,=57.98 MPa

while the angle 0, subtended by the o - and 0,-axes is given by 0,=159°. Finally the angle
A, subtended by the polar radius r -polar radius r,=(0M) and the 0,-axis is A, =106.49°.
The angle A, subtended by the r,-polar radius and the 0,-axis in Fig.24 is expressed by:

A, = tan"! (0,,/0,,)

The other two intersections of the EPFS by the principal stress planes (0,,0,)
and (0,,0,) may be readily derived by cyclic interchange of the respective indices
and coefficients. However, since 0., and o, stresses are the intermediate failure
strengths, the differences between 0., 0., and 0,,, 0, and, on the other hand, o,,, 0,
and o,,, 0., are always smaller than the respective differences between o, 0., and
O, O¢,- Then, the elliptic intersection in the (0,,0,)-principal stress plane presents
the strongest anisotropy and therefore it constitutes the most important intersection
concerning the phenomena of anisotropy of the material.

3.5 Application of the EPFS-theory to a typical orthotropic material

As a typical example of application of the EPFS-theory to an orthotropic
material three types of an oriented polycarbonate were used, whose strengths in
simple tension and compression are given in table 1.

Figure 25 presents the intersections of the EPFS for the three types of oriented
polycarbonate (materials A, B, C) by the deviatoric plane (p=0) and two parallel
planes to it at a distances z=tp respectively, where the quantity p is given by :

p=dn=\/ 3/(h,+h,+h,) (84)

Since the quantity p expresses the distance between the origin 0 and the point where
the hydrostatic axis is piercing the EPFS, it is obvious that for z=p the elliptic
intersection of the EPFS by this plane should pass through the origin 0.

Table 2 summarizes the values of the coordinates X, y, of the center of the
ellipse representing the intersection of the EPFS by the deviatoric plane, the lengths
a, and a, of its principal axes and the values of the angle 6, and , subtended by the
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Fig.25 - The intersections of the EPFSs for the three types of oriented polycarbonate
(materials A, B, C) by the deviatoric plane (p=0) and two parallel planes to it at a
distances z=tp respectively (p=\/ 3/h,+h,+h,).

0,-principal axis and the Ox-axis of the Cartesian frame and, on the other hand, by the
polar distance r,=(00") of the center of the ellipse and the same Ox-axis.

It is clear from these figures that a variation of the failure strengths along the
intermediate axis of anisotropy of the material does not influence significantly the
size and orientation of the EPFS at the deviatoric plane. Furthermore, if one com-
pares these ellipses with the elliptic intersection along the m-plane for the same
materials he may realize that the small angular displacements of the orthotropic
material relatively to its counterpart of the transversely isotropic one, which is of an
angle smaller than 6,"»=30° does not influence considerably the size and the shape of
the elliptic cross-section at the st-plane.

Figure 26 presents the elliptic intersections of the EPFSs for the three types of
polycarbonate with the (0,, 0,)-, (0,, 0,)- and (0, 0,)- principal stress planes.

It is worthwhile indicating the following remarks :

(i) Variation of the intermediate strengths o, and 0. does not influence
considerably the shapes and orientations of the intersections of the EPFSs and the
(0,, 0,)-plane. While the ellipses become more oblong as the strengths o, and o,
move from the limits of o, 0., towards the limit of 0,,, 0., , the angles 0, of inclinat-
ion of these ellipses with respect to the 0o -axis do not change considerably remain-
ing of the order of 30 deg.

(ii) Similarly, the intersections of the EPFSs with the (0,, 0 )-plane present
small variations in angles and lengths of their principal axes.
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Deviatoric plane

Material Xo Yo a, a, 84° Py®

A -0.34%* 10.20 32.76 45.23 12.80° 91.92°
B -1.39 10.63 33.37 47.79 23:25¢2 97.46°
@ -1.40 10.24 33.40 50.40 29.05° 82.20°

(04, 0,)-plane

Material G g it Ay B, 5 P,°

A -0.99 10.59 36.92 68.88 30.25° 95.33°
B 0.059 11.30 36.02 75.83 32228 89.70°
G 0.93 12.05 35.47 81.72 33.23% 85.60°

*  All quantities except angles in Mpa’s.

Table 2 - The values of the principal axes of the elliptic intersections of the EPFSs, as
well as their orientation and position, for three types of oriented polycarbonate
(A,B,C) by the deviatoric wt-planes and the (o,, 0,)-principal stress planes.

(iii) Comparing this group of ellipses with the respective intersections of the EPFS of
the corresponding material, which is transversely isotropic and described in Ref. [S0,
Figs. 5 and 7], one may state a striking similarity between the ellipses of Fig.26a of
this work and Fig. 7 of Ref. [50]. For the transversely isotropic material we have :

a,,,=62.40 MPa, a,,,=38.20 MPa, 0,=27° P,=101.10°

whereas for the material A we have respectively :

a,,,=68.88 MPa, a,,,=36.92 MPa, 0,=30.25°" “'1,=95.33°:

On the other hand, the differences in the (0,,0,)-plane of ref.[50], which is the isotropic pla-
ne for the respective transversely isotropic material, between the transversely isotropic
material and its respective fully isotropic material, indicated in Fig.5 of ref.[50], are

significant, whereas the differences in size and oriantation between the transversely iso-
tropic material and the orthotropic one are much smaller.
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Fig. 26 - The elliptic intersections of the EPFSs for the three types of oriented poly-
carbonate (materials A, B, C) by the principal-stress planes (05, 0)), (0,, 0,) and (0,,0,).

(iv) These remarks suggest that, for convenience, it is acceptable to assume that
an orthotropic material is satisfactorily described by the respective transversely
isotropic material and proceed in the design, since the differences between these two
materials do not influence the overall behaviour of the orthotropic material.

(v) The shapes of the intersections of the EPFSs of the three materials by the
third (0,,0,)-principal stress plane present a rounded elliptic one to counter balance
the excess in ellipticity of the respective intersections with the (0,,0,)-plane relatively
to the transversely isotropic case.

For the general orthotropic material the EPFS has its planes of symmetry
0”y”z” and 0”x”z”, which are oblique relatively to principal stress and principal
diagonal planes. These obliquenesses are represented by angles 0, and ,. It is
therefore of interest to plot the intersections of the EPFSs for the materials A,B and
C and the three principal diagonal planes (0,,8,,), (0,,9,) and (0,,). These
intersections are plotted in Figs. 27 (a,b,c).

It is clear from these figures that, although the EPFSs for the orthotropic
materials are obliquely positioned relatively to the principal stress- and diagonal-
planes, subtending angles with the first group of the order of 30 degrees, the
intersections of the EPFSs by the principal diagonal planes are parabolas almost
symmetric to the hydrostatic axis, 0z, in the stress space. This fact indicates that,
although the EPFS of a certain orthotropic material is obliquely positioned relatively
to the principal diagonal planes, it presents some kind of symmetry according to
which the hydrostatic axis remains always close to the axis of symmetry of the
particular failure locus of the material.



64 IMPATMATEIAI THE AKAAHMIAZ AOHNQN

zl

z.
(Oriented PC) z
(A, B, Q)
(0"x"z"-planes)
(0"x"z"-planes)
073 0/|0" =y'
(A,B,C)
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(scale x2)
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Fig. 27 - The intersection of the EPFSs for the three types of oriented polycarbonate

(materials A, B,C) by the planes of symmetry 0"y"z", 0"x"z" and the deviatoric plane 0"x"y".

It is interesting pointing out that an increase of the intermediate failure strength
of the material (0,,,0.,), while does not influence significantly its failure behaviour for
loadings lying close to the deviatoric plane, it creates a large difference at the regions
of vertices of the EPFSs. Indeed, as the intermediate strengths increase, in the
interval between the lowest strengths 0.,,0., and the highest ones 0,,,0..,, the vertex of
the respective EPFS is rapidly receding along the 0z-axis toward the possitive
infinity, thus resembling more and more to the conical or Coulomb-Mohr criterion
for brittle materials. Then, this rapid movement of the vertex of the EPFS indicates
the strong influence of the hydrostatic component of the stress tensor to the failure
behaviour of the material.

Finally, in Fig.27 the intersections of the EPFSs for the three types of oriented
PC with their planes of symmetry 07y”z” (Fig.27a), 0”x”z” (Fig.27b) and by the
deviatoric planes, 0”xy” (Fig.27c) were plotted in order to compare these symmetric
intersections of the EPFSs with their respective intersections of Fig.22. It is clear that
the maximum deviation between the 0z- and 0”z”-axes happens on the 0”y”’z”-section,
whereas for the 0”x”z”-intersection the two axes almost coincide. The differences of
the same axes in the intersections of Fig.22 are in-between these extreme distances.
The intersections of EPFSs by the deviatoric plane shown in Fig.27c presents another
aspect of the same phenomenon.

Then, it may be concluded that the elliptic paraboloid failure surface continues to
represent satisfactorily the general failure locus of any orthotropic material. However,
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while for the transversely isotropic materials the EPFS is always symmetric to the
principal diagonal plane (0,,0,,), which contains the hydrostatic axis (0z) of the stress
space, the parallel to it axis of its symmetry, and the strongest failure direction o,, for
the orthotropic material the respective EPFS has its plane of symmetry parallel to the
0z-axis, but inclined to the principal diagonal plane by an angle 6 depending on the
difference of the inferior strengths o,,, 0., and o;,, 0., of the material. However, the
new locus presents the same basic characteristic properties of the EPFSs, valid for the
isotropic and the transversely isotropic materials, that is it remains an elliptic para-
boloid, whose axis of symmetry is parallel with the hydrostatic axis of stress space.
Finally, as a conclusion, it may be stated that, since the differences between o,,,
0y and o,,, 0., do not influence considerably the shape, position and size of the
respective EPFSs, an orthotropic material may be approximately represented by a
failure locus valid for transversely isotropic materials with 0., = 0, and 0, = 0,,. This
simplifies considerably the amount of calculations. Furthermore, this fact explains
why real orthotropic materials are treated in the vast literature of the subject as
transversely isotropic materials without large deviations between theory and

experimental evidence.

3.6 The properties of the elliptic paraboloid failure surface.

The validity of the elliptic paraboloid failure surface criterion was checked in the
numerous publications by the author cited at the end of this study [42-71] with the
abundant experimental evidence existing in the literature for transversely isotropic
and orthotropic materials. However, all the existing experimental evidence concerns
the failure behavior of these materials subjected to a biaxial mode of loading. No
sufficient experimental evidence exists concerning the effect of hydrostatic
compression on the failure properties of anisotropic solids, except the results of
Caddell and Kim [79] for the moderately anisotropic oriented polycarbonate. These
experimental results are given in Fig.27 together with the theoretical prediction of
the EPFS-criterion. The failure locus shown in this figure is a parabola and cor-
responds to the intersection of the elliptic paraboloid failure surface in the principal
stress space, (0, ,0,,0,), by the main diagonal plane (0, = 0,) referred to the (o, 6,,)-
coordinate frame.

Figure 27 indicates the predictions of the EPFS-criterion, called (EPFS-1), which
approximate satisfactorily the effect of hydrostatic pressure on the failure behavior
of oriented polycarbonate. On the other hand, the predictions by the extensively used
failure tensor polynomial criterion introduced by Tsai and Wu [39], who stated that
all interaction terms H;, are independent of the diagonal components of tensor H and
should be defined by experimental tests, are also indicated in Fig.27 by the curves as-
signed as (EPFS-2), by assuming the validity of the Tsai-Hahn empirical condi-
tion H, = -1/2 (H;H;))"? [80]. It is clear from this figure that the use of this

i~ j
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assumption, which is very popular in applications, results in large errors between
theory and experiments when the material is subjected to a triaxial loading mode,
although, when the results of the two criteria are compared in the principal (0,,0,)-
plane, almost coincide [77].

It should be born in mind that the Tsai-Wu approach [39], where all stress
interaction terms in the tensor polynomial function should be experimentally
determined, is merely a curve- fitting process by a quadratic polynomial. Therefore,
it constitutes a failure condition with statistical features, since for the determination
of the stress interaction terms a large number of strength tests is required. Moreover,
either the Tsai-Hahn assumption, or the acceptance that all off-diagonal terms are
equal to zero [81], which yields an ellipsoid failure surface indicated in Fig.27 by the
closed curve designated as (EFS), are unrealistic and should be avoided.

On the other hand, applications of the EPFS-criterion to several, either
orthotropic, or transversely isotropic materials, either homogeneous, or composites,
have proved that the coincidence of the predictions of this criterion with the existing
experimental results is much better than any other criterion and especially with the
tensor failure polynomial criterion, which yielded up-to-now the best of approxima-
tions with the results of tests in biaxial loading modes [42-71].

The position of the EPFS in the principal stress space presents a particular
interest since it allows the separation of the orthotropic materials into two categories -
the tension-strong (T-strong) and the compression strong (C-strong) materials,
depending on what octant in the stress space the open part of the paraboloid is lying.
This can be defined by the position of the vertex of the paraboloid relatively to the
deviatoric plane. Then the distance between the deviatoric plane and the vertex of
the EPFS designated by d' and the distance of the same plane from the point of
piercing of the hydrostatic axis 0z the EPFS, designated by d, are of interest. These
distances are expressed by [11,47]:

5{1"’% (hl'h3)2 }

(85)
H33(h1+h2+h3)

and :
d =3/ (h+h,+h,) (86)

It is obvious from relations (85) and (86) that, since the numerators of both
expressions are always positive, the sign of quantities d and d' depends on the sum
(h,+h,+h,)=trh [47]. Then, if the quantity (h,+h,+h,) is positive the vertex of the
paraboloid lies in the tension-tension-tension octant of the principal stress space and
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therefore the EPFS opens toward the negative z'-axis. An orthotropic material with
such a type of failure surface is classified as compression strong material (C-strong).
On the contrary, if (h+h,+h,) is negative the vertex of the paraboloid lies on the
negative part of the z'-axis of symmetry and therefore the EPFS is open to the
tension-tension-tension octant. The material in this case is classified as tension-
strong (T-strong) material.

Figure 28 presents the (0,,0,,)-principal diagonal intersection of the elliptic
paraboloid failure surface for a typical C-strong transversely isotropic material. The
d,,-coordinate axis coincides with the bisector of the angle 0,00, on the isotropic
plane of the principal stress space. The distances d and d’ are indicating the respective
distance between the deviatoric plane Oxy normal to the (0,,0,,)-plane and the points
of piercing the paraboloid by either the hydrostatic axis (0z) or the symmetry axis
(0’z’). The angles subtended by either the hydrostatic axis or the symmetry axis and
the 00,,-axis are equal to 35.26°, whereas the same axes subtend angles with the o,-
strong axis equal to 54.74°.
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Fig.28 - The intersection of the elliptic-paraboloid failure surface by the principal
diagonal plane (0,,0,,) for C-strong transversely isotropic materials (d,, is the
bisector of the (0,,00,,)-angle in the (0,,,0,,) principal stress plane).

z'=2"(axis of EPFS)

z (hydrostatic
axis)

The distance y,= 1, given by eq.(64) for the transversely isotropic material is given
by the (00’)-segment. This distance is a characteristic quantity of the anisotropy of
the material, which is related to the necessary elastic energy consumed by the
external loading to overcome the elastic energy of anisotropy of the material [82-89].
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Examining now the other principal cross-section of the elliptic paraboloid
failure surface it may readily be proven that this cross-section is also a parabola. For
reasons of simplicity we give the shape of this parabolic intersection by the Oxz-plane
for a typical transversely isotropic body, thus avoiding the complications in the
forms of these sections for the orthotropic material, where the axes of symmetry are
inclined to the initial Oxyz-frame.
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Fig. 29 - The parabolic intersection of the elliptic-paraboloid failure surface for C-
strong materials by the 0'x'z'-plane, parallel to the hydrostatic axis 0z.

Figure 29 presents the intersection of the elliptic paraboloid failure surface of a
typical C-strong transversely isotropic material by the transverse Oxz-plane. Now the
parabola has its apex at the vertex of the paraboloid A, but the x”-coordinate at the
origin 0 is given by the quantity a, expressed by relation (68). Since the ratio A=a,/a, of
the principal semi-axes of the deviatoric plane of the paraboloid is given by relation (69)
where a,<a,, it is obvious that this parabola is much more shallow than the parabola
representing the intersection of the EPFS by the 0”y”z”’-plane of symmetry, which
coincides with the (00,0,,)-plane for the transversely isotropic materials. The ratio A,
expresses the degree of shallowness of the EPFS-surface. This coefficient, which is called
the prolateness parameter of the elliptic paraboloid is equal to unity for the isotropic
materials, where the paraboloid is a surface of revolution. As the anisotropy of the
material is increased the value of A, is diminishing and the EPFS becomes more and
more shallow. For highly anisotropic materials the shape of the EPFS becomes very
flattened and takes the form of a crashed sigar (expression common in the U.S.A.).
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The distance 0’s’ along the 0”z”-axis, defining the point where the 07z’-axis of
symmetry is piercing the transverse plane (00,0,), is given by :

(O'S')=‘/§np=£(hl-h3) (87)
33

Most of the orthotropic solids and compact materials are C-strong materials, since
they are capable to sustain large compressive stresses without failure. However,
there is a restricted category of materials, which behave like T-strong ones. In these
substances the solid material is distributed in little columns or beams forming the cell
edges in cellular open-cell foam-like solids, where clusters of microvoids intervene
between molecules or crystals, thus creating structures, which may be either isotropic
or more frequently orthotropic. Most polymers can be readily foamed and
techniques exist for doing the same thing with ceramics and glasses, even with metals,
in modern technologies.

Foam-like and porous substances permit the simultaneous optimization of stiffness,
strength and lightness of a structure. The mechanical properties of foamed materials
reflect to some extent the mode of distribution of the solid material, which depends
on the relative density of the solid phase constituting the foam-like or porous
material. Thus, for high void fractions of the total volume structures a lower than
linear decrease in flow strength with a decrease of density was exhibited indicating
that bending stresses within the foam structure are progressively a less important
feature of the collapse load. Then these structures behave like T-strong materials
presenting a higher strength in the tension-tension-tension octant of the stress space
until a collapse by internal buckling of the structure takes place.

Similarly, oriented polypropylene has a geometric conformation of the individual
polymer molecules in the unit cell of a polymer crystallite depending strongly on the
repulsion of the methyl groups in the planar zig zag conformation. The molecules
assume positions at 120 degrees out of the plane of the chain and are therefore
forming helical conformations within the unit-cell of their crystallites. Therefore low-
density oriented polypropylene influenced by the spring-like cells presents a T-strong
behavior as it has been proved in refs.[11] and [53].

Likewise, paper sheats, which consist of networks of fibers placed at different random
arrangements, whose properties, nature and frequency of bonds between them
influence the properties of the paper sheets belong in the same category. Indeed,
fibers are actually filament-wound composite systems, whose cell walls are composed
of a number of different layers, the fibrils, which are aggregates of cellulose molecules
with cellobiose as the basic repeating unit, arranged either in an orderly, or in a
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random fashion. The fibrils themselves are arranged in a regular fashion differing
within the various layers of the cell-wall and they are held together by the
hemicellulose and lignin matrix material.

Such conglomerates contain a great number of microvoid clusters distributed
randomly inside the structure and this reduces considerably the specific density of the
material. The bonded fibers act like springs largely interconnected. It is therefore to
be expected that low density paper sheets behave like T-strong anisotropic materials,
as it is clearly indicated in ref.[49].

Similar results have been found in a study of foamy materials [51] where the failure
modes of three types of polyurethane foams with densities varying between
d,=64kg/m3, d, = 96 kg/m3 and d, = 192 kg/m? were studied. Whereas the low density
material (d,) may be considered as a open cell rigid foam, the other two substances
correspond to closed-cell cellular solids. All these materials are transversely isotropic
bodies whose failure loci are completely determined by their failure stresses in
tension and compression along the three principal stress directions. It was clearly
proved that as the density of the cellular solid is increased the mode of failure of the
material changes from a T-strong material to a C-strong one. In-between the material
passes through a quasi-isotropic status, where the axis of symmetry of the respective
EPFS almost coincides with the hydrostatic axis.

On the contrary, elastic compact solids, whose porosity is insignificant, present
‘always a C-strong behavior independently if they are rigid homogeneous solids, or
composite materials. As an example, an oriented polycarbonate studied in [79]
behaves as a moderately anisotropic C-strong material, as all the fiber reinforced
composites studied in refs. [42-71].

In the following we consider transversely isotropic materials obeying the
stability condition (61). This means that we consider only well-behaving transversely
isotropic materials whose ratios R,=0,,/0,, and R,=0_ /0, , defining the two principal
strength differential factors, and ratio R ,=0.,/0,, , defining the tensile coefficient of
anisotropy of the material, take values that are in agreement with the features of
typical materials used in applications. Assuming that o.,>0,, , a fact which is always
valid in anisotropic materials used in constructions, we investigate the sign the
quantity trh, since the signs of R; and R, are always positive, because it is valid that
R,21.0, R ,21.0. The quantity [50,53] :

trh = (h,+h,+h,) (88)

which for the transversely isotropic material becomes :
trh = (2h,+h,)

may be written in terms of R, R, R, as follows :
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trh:OL[RLT[RL_IJ“F%(RL'IJJ (89)

s T il

The sign of the quantity trh, as it is already mentioned, defines the orientation
of the EPFS for each transversely isotropic material. A positive value for trh
indicates a C-strong material, whereas a negative one, a T-strong material. In the first
case the EPFS has its open end oriented toward the compression-compression-
compression octant, whereas in the second case the EPFS is oriented toward the
tension-tension-tension octant. The values of trh=0 are of interest since for trh=0 the
EPFS degenerates into an elliptic cylinder, resembling the Mises yield condition for
anisotropic materials, which, as is known, neglects the strength differential effect.

However, in the general case of EPFS, where the strength differential effect is
significant and is taken into account, selection of the appropriate values for R, R,
and R, to reduce the failure locus into an elliptic cylinder indicates a weakness and
instability of the material, since in this case it is not possible to decide which one of
the two types of failure surfaces it should follow.

Putting trh=0, a manifold in the (R, R, R ;)-space may be defined which
characterizes all weak transversely isotropic materials and separates the restricted
(R,, R;, R;)-space into two regions, on either side of each limiting curve
corresponding to either C-strong (upper part) or T-strong (lower part) materials.
Then, it is convenient to give in the (R, Ry)-plane the parametric family of curves
with the quantity R, as parameter. This was done for a series of either mildly
anisotropic or strongly anisotropic transversely isotropic materials and fiber com-
posites, with curves R = f(R,). The parameters of these curves were plotted for
individual values of R, . in Fig. 30.

These materials were either oriented polycarbonate, Boron-Aluminium, Boron-
Epoxy, Carbon-Epoxy, Glass-Epoxy or Kevlar 49 fibre composites, with the
characteristic failure strengths as given in Table 3. Values for R, smaller than unity
indicate T-strong materials.

Material 0.,(Mpa) | 0,(Mpa) 0,,(Mpa) 0.,(Mpa) R,=0.,/0;,
PC(oriented) 65.20 42.70 35.20 45.20 1.284
PP(oriented) 34.00 25.90 14.40 9.20 0.639*
Bo-epoxy [14] [ 1296.21 2489.08 62.05 310.26 5.000
Ca-epoxy 1043.00 698.00 43.10 142.24 5.000
Keviar 49 [14] | 1379.00 276.00 29.60 138.00 4.660
Boron-Al [16] 965.30 1379.00 102.05 222.02 2.176
* A value for R;<1.00 indicates a T-strong material.

Table 3 - The values of principal strengths of various orthotropic materials
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Fig. 30 - The variation of the strength differential parameter along the strong
direction, R, against the transverse direction R, for different values of the parameter
of anisotropy, R, ., for a series of fiber composites.

The relationship expressing this parametric family of curves is given by :

R LT

2
= (F'+ 2R )t R, ‘ (90)

L
R,

It was assumed in plotting the curves of Fig.30 that the parameter R, was kept
constant and equal to its value for each individual material plotted and only the
quantities R, with R, are varying between unity and a large number (say five).

It is interesting pointing out that all curves R =f(R,) pass through the point
R,=R.=1.0, which defines the theoretically ideal isotropic material. This point presents
equal strengths along its respective tensile and compressive principal directions.
Indeed, for R,=R,=1.0, the failure surface degenerates into the Mises cylinder :

X2 +y%=2/3 0,

192
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where 0, is the yield or failure strength for ideally isotropic materials.

It is also clear from this nomogram that any combination of R, R;andR,,-
values corresponding to points lying above each respective limiting R, =f(R ),
curve for each particular material, indicates a C-strong material, whereas points
beneath this curve represent a T-strong material.

Since the region of weak behaviour of the material is restricted around its
respective R, =f(R,),,; curve, the position of each material in the (R , R,)-plane and
its distance from the respective R, =f(R,) curve indicates the degree of the efficient
performance of the material. The position of performance of the transversely
isotropic materials study in table 3 are indicated in Fig.30 by oblique crosses. The
distances along the ordinates between these points and the respective transient
R, =f(R;) curves indicate the degree of efficiency of the materials. Thus, the Boron-
epoxy and the Boron-aluminium composites indicate a very satisfactory perfor-
mance, whereas glass-epoxy and graphite-epoxy show a rather reduced quality. The
minimum distance appears for Kevlar 49, for the fiber composites and for oriented
polycarbonate and the homogeneous materials.

The region R, <1.0 in Fig.30 belongs exclusively to T-strong materials, but these
materials present a peculiar behavior, since their transient curves cannot exceed the
limit for which the R, -ratio becomes negative. Then, the interval of variation of R is
restricted between R,=1.0 and R=2R ./(1+2R,). In this limited interval small
variations of R, create large variations in R, which for R,=2R ,/(1+2R,) tend to
infinity. Such large values for the longitudinal strength differential factor are
unattainable. The actual positions of the T-strong materials in the (R, ,R,)-diagram
are always inside the safe zone for these materials.

For example, oriented polypropylene with 0.,=34.0 MPa, 0.,=25.9 MPa,
0,,=1440MPa, and 0.,=9.20 MPa, and coefficients R,=0.761, R,=0.639 and
R,;=2.361 presents a transient R,=f(R,) curve varying between R =1.0 (for R,=1.0)
and R = for R;=0.825. However, its position with R;=0.761 and R;=0.639 in the
(R, ,R;)-diagram is deeply inside the second quadrant (for R;<1.0) of Fig.30 and lies
far away from the position of its R, =f(R )y, 1, ;,-curve and therefore it presents a safe
mechanical behavior.

3.7 Experimental verification of EPFS

It has been shown that the elliptic paraboloid failure surface for transversely
isotropic materials is symmetric to the principal diagonal plane containing the 0,-
strong principal axis and the bisector 0,, of the right angle 0,00, on the transverse
isotropic plane of the material. The intersection of the EPFS with this plane is a
parabola having its vertex in the tension-tension-tension octant for C-strong mate-
rials and in the compression-compression-compression octant for the T-strong mate-
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rials. All other sections of the quadratic surface not containing its axis of symmetry,
which is parallel to the hydrostatic axis of the principal stress space, are ellipses.
Ellipses are also the intersections of the EPFS by planes parallel to the deviatoric
plane. The situation is more complicated for orthotropic materials because of the
angular displacement of the symmetry planes of their failure surfaces about the
hydrostatic axis of the material.

Of all these intersections, the most important for the study of the validity of the
failure locus are the intersections by the deviatoric st-plane and those by the principal
stress planes. For transversely isotropic materials two such intersections are
important, those by the (0,,0,)- or (0,,0,)- planes (which are identical) and the
intersection by the plane, (0,,0,), of isotropy of the material.

Figure 31 presents the intersection of the elliptic paraboloid failure surface of a
graphite-epoxy fiber composite by the principal diagonal (0,,0,)-plane and its
normal (x’0’z’)-plane. Both these intersections are parabolas with openings that have
a ratio given by the quantity A, In the same figure the elliptic intersection of the
EPFS by the deviatoric m-plane is given by K, L, K’, L’-curve. The axis of
symmetry of the paraboloid, which is parallel to the hydrostatic axis, lies at a distance
y,=n,, which depends exclusively on the strength differential parameters and the
parameter of anisotropy of the material. Figure 32 presents the intersection of the
EPFS for the graphite-epoxy fibre composite of Fig.31 by the principal (0,,0,)-plane.
This intersection is an ellipse with centre M, and lengths and orientation of its
principal axes as defined in the figure.

For strongly anisotropic materials, the shape of EPFS resembles a sword’s
sheath (a very flattened paraboloid) and its intersection by the (0,,0,)-plane an oblong
ellipse almost parallel to the principal 0,- and o,-axes. This explains why the maxi-
mum principal stress o, along the fibre direction constitutes a satisfactory appro-
ximate criterion for failure of strongly anisotropic fibre composites.

Since triaxial tests are difficult to execute, so as to yield reliable results, biaxial
tests remain the only tests along the principal planes (0,,0,) or (0,,0,) for the
verification of the influence of orthotropy on the elliptic failure (0,,0,)-locus of the
plane of isotropy of material. Although the change of the shape of the elliptic locus
along the isotropic (0,,0,)-plane is very sensitive to the influence of orthotropy of the
material, up to now no test along this plane has been executed.

Figure 33 presents the intersections of the EPFSs for oriented polycarbonate
(C-strong material) and for oriented polypropylene (T-strong material) by the (0,,0,)-
planes of isotropy. The ellipses corresponding to the transversely isotropic material
(curves 1) and to the respective isotropic materials presenting the same strength
differential parameter (curves 2) were plotted in these diagrams. Moreover, and for
comparison, the ellipses for the respective isotropic materials were also plotted for
the case where R=1.0 (0,=0,). It is clear from these plottings that although in both
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(3)

Fig. 33 - The intersections of the EPFSs for C-strong oriented polycarbonate (a) and T-
strong oriented polypropylene (b) by the plane of isotropy (0,,0,). Curve 1 corresponds
to the actual transtropic case, curve 2 to the isotropic case with strength differential effect
(0.>0;) and curve 3 to the isotropic case without strength differential effect (0,=0,).

pairs of curves for the isotropic and the orthotropic cases with strength differential
effects, the points corresponding to uni-axial loading 0,10, 0,=0 or lo,#0, 0,=0 are
coincident, there is a large difference between the two cases for biaxial equal loading
and especially for bi-axial equal compression for the C-strong material or for biaxial
equal tension for the T-strong material.

This fact suggests an interesting test for the evaluation of the failure properties
of the transversely isotropic materials, according to which a thin or thick plate, cut
along the transverse isotropic plane of the fiber composite, is subjected to biaxial
equal tension or compression. By comparing the failure stress for this case with the
respective test for a plate made of the same material as the matrix of the composite,
important information is gathered concerning the amount of anisotropy of the
composite. For a complete study of the results of such biaxial tests on the isotropic
transverse plane of symmetry (0,,0,) of a transversely isotropic material the reader is
referred to recent publications of the author in refs.[85] and [86], where it was shown
that there is a clear difference between criteria based on the same failure tensor
polynomials but accepting different assumptions for defining their coefficients,
sufficient to distinguish which one of them is closer to reality. In these references the
comparison is restricted to the most common used criteria of Tsai-Wu with the
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Fig.34 - (a) The intersections of the EPFS for the graphite-epoxy fiber composite of
Fig.31 by the (0,,0,)-principal stress plane of isotropy (normal to the fibre direct-
ion).(b) is the detail around the origin of the three respective intersections for the
fibre composite (curve 1), for the isotropic case with strength differential effect the
same as previously (curve 2) and for the totally isotropic case (curve 3). and (c) the
intersection of EPFS with the (0,,0,)-plane.

assumption made in ref.[81] that H;=0 for i#j, as well as for the Tsai-Hahn criterion
[80], where it is arbitrarily assumed that H=-1/2(H, H,)!'”, which were compared
with the EPFS-criterion.
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Figure 34 presents the intersections of the EPFS for a graphite-epoxy fibre
composite by the (0,,0,)-isotropic plane. In Fig.34a the difference between ellipses
1,2 and 3 is strinking, since ellipses 2 and 3 disappear, reduced to small areas around
the origin, while ellipse 1 for the transversely isotropic material appears displaced far
away along the negative d,-axis. This is because the graphite-epoxy composite is
strongly anisotropic with R;, R,, R, taking large values. In the same Fig.34 the
intersection of the EPFS for the graphite-epoxy fibre composite with its (0,,0,)-
principal stress plane was also plotted (Fig.34c¢). This curve is similar to the curve of
Fig.32 plotted by using the EPFS.

Since triaxial types of tests for defining the failure locus of fiber composites do
not exist, we limit ourselves to check the validity of the criterion by comparing its
results with existing experimental evidence for different composites based on plane

stress tests lying on the (0,,0,)-principal stress plane.
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Fig.35 - A comparison of the failure loci along the (0,,0,)-stress plane for (a) an
oriented polycarbonate (C-strong), (b) an oriented polypropylene and (c) Morganite
II (carbon fibre-epoxy composite) and the existing experimental evidence.
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Figure 35 gives the results of tests used by previous investigators proving the
validity of different failure criteria. Thus, Fig.35a presents the failure locus for an
oriented polycarbonate with characteristic strengths as given by Caddell and Wood-
liff [74], which is a compression strong transversely isotropic material, whereas
Fig.35b gives the failure locus of an oriented polypropylene [74,81], which is a
tension strong material (T-strong), and Fig.35c¢ yields the failure locus for a graphite-
epoxy fibre composite given by Wu [76,87] and Wu and Scheublin [88]. All these
three loci are referred to the (0,,0,)-principal stress plane.

- The coincidence of the experimental results with the yield loci given by the
elliptic paraboloid failure surface represented by full lines is remarkable, better and
higher that the comparison with any other failure locus. This fact indicates the validity
and the flexibility of the EPFS to describe in a satisfactory way the failure behaviour
of any composite and anisotropic or isotropic material [42,78].

4. VARIATIONS OF THE EPFS CRITERION

4.1 The ellipsoid failure surface (EFS)

The elliptic paraboloid failure surface, which is an open one-sheet surface, is
convenient for compacted and thickpacked materials of condensed matter which
present high resistance in multiaxial compression for C-strong materials [42,71]. As
Bridgman has decisively shown, these materials can sustain high amounts of
hydrostatic pressure, for the initially isotropic materials, or of hydrostatic pressure
combined with some lateral compression or tension for the orthotropic ones [40].
Besides these materials there are some substances and modern materials, where the
solid matter is distributed accordingly to form cell-clusters. These materials present
high values of porosity and may behave like tension-strong materials (T-strong
materials [49,50,55,59]). Besides these foams, paper sheets consisting usually of
complicated conglomerations of fibriles with many voids between them present a
definite T-strong behavior [59]. Similarly, oriented polypropylene is a T-strong
material, since the geometric configuration of the individual polymer molecules in
the unit cell of a polymeric crystallite of this high polymer depends strongly on the
repulsion of the methyl groups in the planar zig-zag conformation. Then, the
molecules assume positions at 120° out of the plane of the chain and are therefore
forming helical conformations within the unit cell. This results in a low density for the
oriented polypropylene, which is influenced by the spring-like cells and creates a
tension strong behavior [11,53].

The principal mechanism of failure of all these materials is based on the cell-wall
bending. It has been established that their failure mode can be satisfactorily described
by the elliptic paraboloid failure surface for the general orthotropic body [55,59].
Besides, since these materials fail in the compression-compression-compression
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octant of the principal stress space (or in the tension-tension-tension octant for the
T-strong materials) by elastic buckling (or general collapse of their foamy structure
for the T-strong ones) there is a need to take into consideration this also mode of
failure. In previous publications by the author [55,59] it was established intuitively
that the EPFS-criterion should be complemented by an ellipsoid surface, whose
principal major axis coincides with the EPFS-axis of symmetry. This ellipsoid can be
defined by the existing evidence for the definition of the EPFS complemented by one
triaxial test. The best and simplest such test is either a hydrostatic pressure p_, or a
hydrostatic tension p,. Comparison of this two surface criterion with experimental
evidence with foams showed a good agreement of theory and experiments.

It is therefore possible to generalize the elliptic paraboloid failure surface,
associated together with a congruent ellipsoid describing the buckling behavior of
such materials, by a unique failure surface defined by an ellipsoid, whose major
principal axis is parallel to hydrostatic axis and which is defined by the three pairs of
failure stresses in simple tension and compression along the three principal axes of
the material combined with a single failure test in hydrostatic compression.
Consequently, this new criterion is the most general criterion, which includes also the
elliptic paraboloid failure surface, and it is much more versatile, since it can be
adapted to any type of material.

For a closed-end surface, as it should be the ellipsoid failure surface EFS, "
relations (57) defining the three off-diagonal terms of the fourth-rank tensor H do not
hold anymore. They should be replaced by other substitutes. For this purpose we
consider the principal diagonal intersection of the ellipsoid by the (0,,0,,)-plane,
which for the general orthotropic body is expressed by :

1 2 2 ~
Sy HHL 2 ) 612+H330§+\/2(H13+H23)61203+—2—(h1+h2)612+h303—1—0 (90)

Relation (90) for the transversely isotropic material, which is of interest here,
because of its simplicity and almost general application in orthotropic materials of
the praxis, becomes:

(H,+H,)8,,2+H,,0,242\2H,,6,,0,+\2h 8 ,+h,0,-1=0 91)

In order Eq.(91) to express an elliptic intersection for the new criterion, instead of a
parabolic as it is for the EPFS, it is necessary to satisfy the following inequality [78] :
(H,+H,) V2H,,
det A, = det
>0
\/2HI3 H33
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The determinant A, yields the inequality :
(HII+HI2)H33 > ZI.IIS2 (92)

We apply now the first general constraint on eq.(91) that the major axis of the elliptic
intersection is parallel to the hydrostatic axis of the system, i.e.,

0,=V2/2 8, 93)
This relation implies that angle 6, subtended by the hydrostatic axis and the 0,,-

diagonal, is equal to 6=35.26°. On the other hand, the angle 0 subtended by the
symmetry axis of the surface of Eq.(91) and the d,,-axis is given by [78] :

tan 26 = 2h/(a-b) (94)

where 2h, a and b are the coefficients of the terms §,,0,, 6,,> and 0,% respectively of
the polynomial of Eq.(91). Then it is vald that :

242 .

tan 20 = =2/2 %95)
(H1 1+H12'H33)

Relation (95) yields :

IH;;=H -H, +H,, (96)

Since both relations (92) and (96) must be valid, substituting Eqs. (96) into (92), we
derive that :

2H|32'H33H|3'H33 <0 (97)
Relation (97) when solved, yields :
-12H <H  <H;, (98)

Then, Eq. (91) represents an ellipse in the principal diagonal plane (0,,8,,), whose an
axis of symmetry (major or minor) is parallel to the hydrostatic axis. Therefore, the
set of relations (96) and (98) defines a family of ellipses.

It can be readily shown that these ellipses, which constitute central intersections
of the failure surface, belong to an ellipsoid surface, symmetric to the (0,,0,,) plane
for the transversely isotropic bodies. From the infinite family of ellipsoids corres-
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ponding to values of the term H,, lying inside the interval (98) we have now to
choose the convenient one which fits the particular properties of the material under
study. This can be decided by a single test. As the most convenient, simplest and most
reliable test, a failure test in hydrostatic compression, p, , is suggested. A second
choice may be a test of a lateral pressure -p, in the plane (0,,0,) combined with a
simple tension or compression up to failure along the o,-direction, p,.

The inequality (98) may be written as follows :

H.=%H, 99)
where the factor x for ellipsoids moves inside the interval :

-05<%<1.0 (100)
Then Eq. (96) yields the value of the coefficient H,, as follows :

H,=[(1+w)H,,-H, ] (101)

The expression for the symmetric ellipsoid valid for the transversely isotropic body is
given by :

H, (0,2+0,2)+H,,0,242[H,,(1+x)-H,,]0,0,+2xH,,(0,0,+0,0,)+
+h,(0,+0,)+h,0,=1 (102)

This surface represents :

1) A paraboloid when : H, =-1/2 H,,,

2) Anellipsoid when : -1/2 H,, < H,, < H,,,

3) A two-sheet hyperboloid when : H , < -H,,/2 . This hyperboloid has its two sheets
symmetrically placed on either side of an axis parallel to the hydrostatic axis, and

4) A two-sheet hyperboloid, whose either sheet is pierced by the hydrostatic axis, if
H13>H33‘

Cases (3) and (4), defining failure surfaces which are two-sheet surfaces, violate
the principle of uniqueness and therefore may be rejected.
Relation (102) is the most general expression for a failure surface belonging to the
tensor polynomial functions for the transversely isotropic bodies. It can be readily
generalized for the orthotropic materials according to the theory developed in
previous papers [68]. Indeed, by giving to the factor x the value x=-0.5 we derive the
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expression of the elliptic paraboloid failure surface, which is a powerful criterion for
all compacted and thickpacked anisotropic materials of condensed matter, which
present a very high strength in the compression-compression-compression octant of
the principal stress space [42-50,68].

For values of » in the interval -0.5<x<0 the failure surface becomes an ellipsoid.
For values close to the low limit ®=-0.5 the respective ellipsoid coincides almost with
the corresponding elliptic paraboloid in the important zone of moderate loadings
near the origin of the stress space. The discrepancies between the two surfaces start
to appear at very high compressive loads, where the ellipsoid deviates from the
respective paraboloid tending to close at some high value of compression.

The renowned experiments by Bridgman [40] indicated clearly that all isotropic
materials can sustain high amounts of hydrostatic pressure without failure and,
consequently, the orthotropic materials present safe paths for loading modes along
the symmetry axes of their failure loci [S1]. These types of loading consist of a
hydrostatic pressure, superimposed by tensile or compressive lateral loads defined by
the displacement of the symmetry axis from the hydrostatic axis [83]. However,
some anisotropic materials may fail at high pressures by complicated fracture modes.
In these cases a suitable failure criterion is the ellipsoid failure surface (EFS) with
values of ® approaching the limiting value of ®=-0.50.

Besides these compacted materials, there are some substances and modern
materials where the solid matter is distributed accordingly either to form cell-clusters,
or to form porous materials. The high porosity of these materials makes them to
behave like tension strong materials (T-strong). Such typical material is the oriented
polypropylene [87].

A material may become a tension-strong one when its porosity overpasses
some critical value. Thus, polyurethane foams of a density below d =96 kg/m’
become T-strong materials, whereas for densities above this limit-density they
behave like normal compression-strong substances. At the limit of approximately d,
=96 kg/m’ the polyurethane foam behaves as a quasi-isotropic substance [59]. Then,
the amount of porosity plays a role in the behavior of the material, by changing it
from compression strong to tension strong.

Similarly, paper sheets present a definite T-strong behavior, as well as oriented
polypropylene is also a T-strong material [40,53]. Failures of these materials may be
conveniently represented by ellipsoids, which present a closed-end surface. In all
these cases values of the factor » are approaching usually the limit value of x=-0.50.

Finally, rigid-cell foams, which fail normally as compression strong materials,
are conveniently represented by elliptic paraboloid failure surfaces. However, if
these materials present a premature cut-off failure by internal buckling at moderate
compression stresses, this failure type may be represented by an ellipsoid failure
surface of the family of ellipsoids corresponding to values of the factor x, either
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Fig.36 - The intersections of the EFS by the principal diagonal (0,,0,,)-plane (0,-axis,
the strong stress-axis) for values of the factor ®=-0.375, -0.25, and 0, corresponding
to a fictitious oriented polycarbonate having these values for the »-factor.

negative ones approaching the value x=0, or positive values lying in the interval
0<n<1.0. The first case yields prolate ellipsoids, whose principal diagonal intersect-
ions are rounded-off thus approaching a circle, whereas the second case yield oblate
ellipsoids relatively to the symmetry axis parallel to the hydrostatic one.

Figure 36 presents a series of intersections of the family of ellipsoids by the
(0,,0,,)-principal diagonal plane, where o, is the direction of the strongest principal
failure stress (fiber-deriction) and ,, is the bisector of the right angle 0,00, subtended
by the principal o,-and o,-directions in the isotropic plane, corre-sponding to an
oriented polycarbonate, studied previously, where it was assumed that, instead of x=-
0.50, the factor x takes the arbitrary values ®=-0.375, x=-0.25 and finally the value
%=0. For this latter value the respective ellipsoid becomes a special one having a
circular intersection by the principal diagonal plane (0,,0,,). For positive values of %
the prolate ellipsoids along the hydrostatic axis become oblate, having their
symmetry- axes parallel to the hydrostatic axis, rapidly receding from it, thus
presenting a strong asymmetry and tending to become two-sheet hyperboloids. Figure
37 presents the cases for ®=0.50 and x=0.875 for the same material of polycarbonate.
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Fig.37 - The (0,,8,,)-principal diagonal intersections of the EFS corresponding to the
same material as in Fig.36 but with positive values of the »-factor (x=0.50, 0.875).

It is clear from these ellipses that their major axes, which are parallel (for -
0.5<%<0) or normal (for O<x<1.0) to the hydrostatic axis, are receding from the
hydrostatic axis or its normal, as x is increasing. For x-negative the ellipsoids are
prolate relatively to the hydrostatic axis. For x=0 the (0,,9,,) intersection of the
ellipsoid becomes circle and for ®-positive the ellipsoids change to oblate ones.

It is worthwhile referring the ellipsoids to a Cartesian system Oxyz, where the
0z-axis coincides with the hydrostatic axis and the Oxy-plane coincides with the
deviatoric m-plane. The Oy-axis lies on the (0,,0,,)-plane, whereas the Ox-axis is
normal to it. Moreover, it is of interest to define also the 0'X'y'z-system of
coordinates, where the 0'z'-axis is the axis of the ellipsoid which is parallel to the
hydrostatic axis, 0z, and the 0'x'y'-plane is parallel to the deviatoric plane, whose 0'x'-
and 0'y'-axes correspond to the minor and the intermediate principal axes of the
ellipsoid. For the transversely isotropic material it reduces to :

[2H, 1-H33(1+%)]x2+H33(1-x)y2-\/% (h,-h,)y+H,,(1420)7°+ 7%— (2h,+h,)z-1=0 (103)
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Relation (103), where the three first terms of the left hand side are independent of the
z-coordinate, indicates that any cross-section parallel to the deviatoric plane, where
z=0 is an ellipse whose center lies along the axis of symmetry of the ellipsoid.

The distance between the hydrostatic 0z-axis and the symmetry axis 0'z', n,, is
expressed by :

(hl'h:;)

Ui
/6 (1-0H

(104)

Equation (104) indicates that as % increases between ®=0.5 and x=1.0 the distance nx
increases. For the particular value ®=-0.50, which corresponds to the EPFS-criterion,
nx is given by Eq. (64).

Figures 36 and 37 present also the distances 1 between the two parallel axes for
prolate and oblate ellipsoids. Distances n, for the prolate ellipsoids vary imperceptibly
with %, whereas these distances for oblate ellipsoids vary very rapidly as % is increasing
from %=0 to x=1.0 . For »=1.0 the symmetry axis goes to infinity and the ellipsoid
degenerates to a hyperboloid. This rapid displacement of the symmetry axis 0'y' of the
ellipsoids for x>0 results in a shifting of the respective oblate ellipsoid along the 0'y'-
axis. Thus its intersection with the respective paraboloid yields intersections which are
progressively asymmetric. This pheno-menon corroborates the experimental results
of failures of different foams by internal buckling, where the curves traced by the
experiments in the (0,,0,,)-plane are progressively asymmetric as the buckling failure
loads are approaching the origin [39].

The intersection of the ellipsoid by the (0,,8,,)-principal diagonal plane referred
to the (00,0,0,)-system of coordinates is expressed by [57] :

H,,(14%)d ,24+H,,0,242V2 »H,,0 ,0,+V2 h § ,+h,0,-1=0 (105)

Equation (103) or (105) may be used for the definition of any cross-section of
the ellipsoid. A detailed description of these failure surfaces was presented in ref.[57].
Here we are limited to give the characteristic dimensions of these ellipsoids.

Equation (103) indicates that the intersections of the ellipsoid by planes z=p
parallel to the deviatoric plane z=0 have their centers along the 0'z'-axis of
symmetry, so that the coordinates of these centers are [45,78] :

2y Eos ) y,=n, and 2z’ = =p (106)

Other interesting dimensions of the ellipsoids are :
1) The distances d, between the deviatoric plane and the points of piercing the
ellispoids by the hydrostatic axis, 0z : These distances are expressed by relation (103)
by putting x=y=0. They are given by :
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12
2
(2h +h,) [%(2h1+h3) +4H,(1420)]
= + (107)
"D 2 3 H,,(142%) 2H,,(1+2%)

Expression (107) for the elliptic paraboloid failure surface where x=-0.50 yields the
well-known expression [47] :

d, =3/(2h,+h,) (108)

2) The distances d', between the origin 0' of the 0'x'y'z'-frame and the vetrices of
the ellipsoids: The half-difference of the two values d',,, gives the distances T,. The
distances d',(,, of the positive and negative vertices of the ellipsoids from the deviat-

oric plane are given by :

12
1 {1 ¢ I )
e @hiahy) o [0l ) AL (1+20) . o,
d " ‘/3 1 3 7 3 1 3 83 33( K) (109)
RERSEIH vy 2H,,(1+2%)

Then, the distance between the deviatoric plane and the center of the ellipsoid
is given by :

Go=(dyy -4 )2 = @, - )2 (110)

3) The dimensions of the major and minor semi-axes of the maximum elliptic
intersection of the ellipsoid which is parallel to the deviatoric plane: The length of the
minor semi-axis of the ellipse along the 0'x"-axis is derived from the equation of the
ellipsoid referred to the 0'x'y'z'-system by putting y'=0. Then, it can be readily found
the expression for X', :

(2h +h;)

[2H, -H,.(1 x)]x'2—1+M ciH GG, ————— (111)
1i155533 % 6H33(1—%) 33 I3

The ratio x'/y', of the principal semi-axes of any intersection of the ellipsoid by
planes parallel to the deviatoric plane is given by :
12

g o it e 75
Hsmev, 2H,-H,,(1+%)

which is independent of the coordinate z', and therefore remains constant along the
length of the major symmetry axis of the ellipsoid.
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It is of great interest to define the position, orientation and the shape of the
intersection of the ellipsoid by the principal stress plane (0,,0,), since this failure
locus corresponds to two-dimensional failure loci of plates. It has been shown [57]
that the coordinates of the centers of such intersections are expressed by :

{ (h,-%h,) (h3H“-uh]H33)}
(%01%3)= | " 2H,,4*H,,) " 2H,,(H,,H,,)

(11.3)

The angle 0, subtended by the polar radius OM connecting the origin 0 and the center
of the ellipse is expressed by :

tan 20, = - [2xH,/(H, -H,,)] (114)

whereas the angle A, subtended by the minor axis o0, of the elliptic intersection and the
0,-axis is given by :

(h3H11_%th33) (1]5)
H,,(h,-xh,)

tan)»1 =-

The lengths of the semi-axes of this ellipse, denoted by a,,, and a,,, respectively, are
given by relations (25) to (29). In these relations the respective quantities for the
ellipsoid failure surface corresponding to the x-factor are given by :

detA, = (H, H,, - ¥*H,2) (116)
detA, =- detA-1/4{h2H, +h *H,-2xh h,H,,) (117)
61‘ =l & 2 0e2 12

62‘ —5 {(H]1+H33)—[(H11'H33) +4x H33] } (118)

It has been shown [57,59] that, as the factor x is increasing from its lower bound of
%=-0.50 to the upper bound x=0, the intersections of the ellipsoid by the principal-
stress planes become more and more rounded off, whereas the principal axes of the
elliptic intersections rotate anti-clockwise tending to become parallel to the principal
stress axes 0, and 0,.

Another important observation is that the differences in the positions and
shapes of the intersections for various values of % are rather small and, to a good
approximation, the theory of elliptic paraboloid failure surface remains valid even
for materials failing in the compression-compression-compression octant of the
principal stress space.
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For the ellipsoid failure surface the three pairs of normal stresses in simple
tension and compression are not anymore sufficient for its definition. An extra
information is necessary in order to define the as yet non-defined factor x. The
easiest and the most reliable test is the hydrostatic pressure test up to failure, since
there exist special arrangements in the testing machines for such a failure test which
yield safe and imperceptibly scattered data. Assume that the failure test under
hydrostatic pressure yields a value -p,.

Setting 0,=0,=0,=p, we defined a value for 8,=-p.N2. When these values are
introduced into eq.(112) yield :

1 (2h1+h3) 1
L= B 17 119)
6H33pg 6H33pc 2 (

Equation (119) defines the value for % corresponding to the hydrostatic failure
pressure (-p.). As soon as the factor » is evaluated the respective ellipsoid failure
surface is completely defined.

For thickpacked materials of condensed matter, failing under very high
hydrostatic pressure (for isotropic materials), or high hydrostatic pressure
superimposed with a lateral stress (for anisotropic materials) the ellipsoid failure
surface is efficient to describe the failure mode of these materials under any
combination of external loads. Now, in order to prove the validity of the proposed
ellipsoid failure surface criterion, we checked the experimental results of failure
stresses of a typical C-strong rigid foam material with the failure locus derived by the
intersection of this ellipsoid failure surface by the principal (0,,0,)-stress plane. As
such material we have used a polyurethane foam with a density 192 kg/m*® (PUR 192).
The failure stresses of this material were given by [59] :

0,,=0,,=1.58 MPa 0,,=2.44 MPa
0,,=0,=2.56 MPa 0,=3.35 MPa (120)

Based on these failure stresses in simple tension and compression the elliptic
paraboloid failure surface was completely defined. In order to define the respective
ellipsoid failure surface for this material it is necessary to measure the hydrostatic
compression failure stress (-p,) corresponding to a general collapse of the specimen
by elastic buckling through plastic hinges developed inside the members of the cell
walls composing the foam. This value was found to be p=-2.52MPa. Then, using
Equation (119) the value of the x-factor is found to be ®=-0.658. The symmetric
ellipsoid traced by using the values (120) as well as the value for x=-0.658 is much
different in general shape as the respective elliptic paraboloid defined by the values
given in (120) alone. These differences are indicated in ref. [59]. However, the
intersection of the EPFS and the respective EFS for the same material by the (0,,0,)-
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Fig. 38 - The (0,,0,)-principal stress intersections of the failure elliptic paraboloid and
the ellipsoid loci for polyurethane PUR 192.

principal stress plane give two ellipses which are very close to each other. Fig. 38
presents these intersections by the (0,,0,)-plane for polyurethane foam (PUR 192). It
is to be pointed out that the experimental evidence and the two ellipses are all close
together, with the one ellipse angularly displaced by a greater angle than the other.

4.2 The generalized elliptic paraboloid failure surface (GEPFS)

In the generalized elliptic paraboloid failure surface (GEPFS) we dispense the
failure criterion from the postulate that the safest loading path is along an axis
parallel to the hydrostatic axis [88]. Instead, this postulate is replaced by the
postulate that the safest loading path for an anisotropic material is the loading path

yielding a spherical strain tensor [88].
Denoting by s this safe symmetric stress tensor it can be determined by :

Si=1G i1 (121)
or, otherwise, in the natural form of Cartesian indices as :

5, = Cydy=C (122)

ijkk

The analytic expressions of the safe stress tensor are given in compacted form as:
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8= Gy e (i=1,2...,6)
Then, the failure criterion for the GEPFS is expressed by :
H-s=As=0 (123)
or because of Eq. (121) it is valid that :
H-C-1=0 (124)

Equation (124) interrelates the components of the failure tensor H with the
components of the elastic stiffness tensor C of the material and indicates an intimate
relationship between the elastic properties and the failure properties of an anisotro-
pic material.

Then, while relations (51) to (53), expressing the diagonal terms of the tensor H
and the differential strength tensor h, remain valid, only the off-diagonal terms of the
H-tensor are influenced by the new postulate.

Developing equation (124) and taking into consideration that we are concerned
only with materials presenting an orthotropic symmetry we obtain a system of three
equations with three unknown quantities, the terms H; (i#]), in terms of the elastic
constants of the material. The solution of this system yields the following three
equations [88] :

2
PRt
Sl o Per M g
Hu“z{H“ S ’w} (125)

Comparing equations (57), valid for the EPFS, and (125) valid for the GEPFS we
derive at once that both relations become identical when A =A,=A,.

It can be readily found that the solution of the system (124) of the three
equations for the transversely isotropic material, with the strong elastic modulus as
E, and the transverse one as E and the respective Poisson's ratios denoted by v, and
v,, Tespectively, yields :

A=k =(14vy) (V) Ep
and :
A, = (1+v,) {2Ev,+E, (1-v))} (126)

where, as always, the 3-direction is the strong direction and the 1,2-plane is the

isotropic one.
Equations (125) for the transversely isotropic materials can be simplified and
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take the form :

H ;=H),=- 5 —Hy (127)

or, introducing the elastic constants of the material, we obtain that :

2
1 2ETVL+EL( 1- vT)
H,,= 2. E (1+v)) Hy-Hy,

2ETVL+EL( 1- vT)
33

H,,=H,,= - { E (14+v)) (128)

The new GEPFS-criterion for transversely isotropic materials with safe stress tensor
s causing a spherical strain tensor is completely determined by equations (51) to (53)
and (128).

In the principal stress space the GEPFS-criterion is again represented by a
quadric elliptic paraboloid having as a symmetry axis a line subtending an angle 0,
with the principal (0,,0,)-plane expressed by :

242 E (1+v){2E,v, +E, (1-v})}

tan20 .=

G (129)

2Ei(1+VL)2—[2ETVL-EL(1—VT)]2
Therefore, the angle 6, subtended between the symmetry axis of the GEPFS and the
hydrostatic axis equals.

0, = (1/2 arctan 20, - 35.26°) (130)

Equations (126) to (128) indicate that there is a correlation between the components of
the failure tensor H and the engineering elastic constants of the material, fact suggesting
directly that initial failure depends on the elastic anisotropic properties of the material,
since initial failure is a limiting elastic state. However, the same interrelation, but
indirect, is implied by the postulate for the EPFS. Equations (127) suggest, furthermore,
that the off-diagonal failure tensor components depend on the ratio of the two factors
(A/A)) and not on their absolute values. This means that the degree of anisotropy of the
material is the regulating factor defining the failure tensor H of the material.
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For moderately anisotropic materials, as it is the oriented polycarbonate (PC) [30],
the predictions of the two alternative versions of the elliptic paraboloid failure
surface do not differ considerably, the angle 6, between their symmetry axes being

equal to :
B0, = (37.50° -35.26°) = 2.24°

whereas for highly anisotropic substances, as it is the carbon fiber-epoxy matrix
composite Morganite II [86] the differences are significant. Indeed, in this case angle
0, 1S given by :

Oy = (76.65° -35.26°) =41.39°  (131)

Apart the difference in angles subtended by the symmetry axes of the two
versions of this failure locus, that is the EPFS-criterion and the GEPFS-one, there is
a similarity in shape of both surfaces. Another characteristic difference between
them is the fact that the EPFS-criteria become progressively shallower as the
anisotropy of the material is increased. On the contrary, the GEPFS-criterion
remains always a deep paraboloid, but with increasing angle of orientation with
respect to the hydrostatic axis.

Introducing the values for the off-diagonal terms H; (i#j) given by relations
(127) for the transversely isotropic material into the general expression (59) for the
failure locus we derive the expression :

z
A 2h +h,)
2 1 L8 2 (h, 3 3 (132)
-\/;(hl-h3)y+§(1 A, J Hy,z°+ 3 z-1=0

The principal diagonal (0,,0,,)-intersection of the generalized elliptic paraboloid
failure surface is derived by putting into eq.(132) the value x=0.

Similarly, for x=0 and y=0 we derive the distances between the origin of the
coordinates and the points where the symmetry axis of the paraboloid is piercing the
failure surface. These distances are given by :

A o
(2h, +h,) - (2h, +h,) 2ot _5
e o 5 g A
(133)

d, =
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The equation of the intersection of the failure locus by the deviatoric rt-plane is given
by putting into Eq.(132) the value z=0. Then we have :

2{H, -(A,/2\ ?H,, }x*+(H,,/6){2+(\,/N) }2y?>-+2/3 (h,-h,)y-1=0 (134)

yields the values for the major and minor semi-axes of the elliptic cross-section as
follows :

(135)

and

12

2
A
ey i Hy,- K Hy, Sea

The distance between the symmetry axis of the paraboloid from a parallel to it axis
passing through the origin of the coordinates is expressed by :

VAEee /6 (h,-hy)

DR z 2
3 (137)
H33 (2 o= x]‘)

x:

The expression of the principal diagonal (0,,0,,)-plane intersection of the generalized
elliptic paraboloid failure surface is given by :

2

2
3 H,,8. +H,,0- nh H3361203+J_ h,8,,+h,0,-1=0 (138)

24

which for 8,,=0, that is the distances 0,® of the points of piercing the paraboloid by
the 0,-strong principal axis are given by :

2
@, —h3i N h3+4H33 . {0’1‘3 (139)

30fE 2H 0c3

(0]
33

as it should be expected.
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The relation expressing the elliptic intersection of the generalized elliptic
paraboloid failure surface by the (0,,0,)-principal stress plane is given by :

H, 0*+H,,0 llH 0,0,+h 0,+h,0,-1=0 140)
1191 = 550" A, o R R S N (

The center of this ellipse is defined by the coordinates (0,6, 0,,,°) expressed by :

i )\3 )\'3 |
)\— h3 SF 2h1 x— hIH33 5 h3H”

@, , %) =< " : N

M 0 Ciw T 33 r
3
— 4
M

(141)

In order to define the major and the minor semi-axes of this elliptic cross-section we
need the following determinants [68] :

Hn ')‘3/2)‘1 H33
detAC = =[H, H,,-(\,/2\ )*H,,-A./2\ H,, (142)
')‘3/2)‘1 H33 H33
Hn ')‘3/2)‘1 H33 h1/2
detA S = SKPNE, H,, h,/2 (143)
h,/2 h,2 5t

and the roots d,, of the characteristic equation :
&2 - trA, %0 + detA,$ =0 (144)

Then, the semi-axes of the elliptic (0,,0,)-principal stress plane intersection are
given by [68] :

12
ek il i [ St
(alM’ a3M )_( 61 3 (145)
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with
C = - (detA /detA.) (146)

Equation (143) yields :

A A
G 1 3 2 2 3
de‘[A3 - -detAz— 78 {—2)\1 H33h1 + H“h3 + (1+ —2)»1] H33h1h3}

(147)
and the solution of the characteristic (144) yields the roots :
1/2
2
) =l(H +H..) + 2 (H. +H.)V-4H. | H M (148)
12 =2 Vi sy Y (H ) -4H ) H - m H,,

Finally, in order to define the intersection of the GEPFS-locus by the (0,,0,) isotropic
principal-stress plane we use the expression for the elliptic paraboloid in the
(0,,0,,0,)-principal stress system, where we introduce the value 0,=0 and we derive :

. A

2

A

3 i

H,,(0}+03) [_] Hy;-2H ), [0,0,+h,(0,+0,)-1 = 0
1

(149)
which for 0,=0, yields :

2
%
i3y = (150)
(M J H33of+2hlol-1_o

and for 0,=-0, gives :

2
A
3 9 & (151)
l:4H“— [K] H;, jl()] =]

We use all three last equations in order to trace the elliptical intersection of the
GEPFS-locus by the (0,,0,)-isotropic plane.
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Fig.39 - The (0,,8,,)-principal diagonal intersection of the elliptic paraboloid failure
surface EPFS for the Morganite II (carbon-fiber/epoxy resin) composite.

This completes the description of this type of failure locus.

In order to check the loci derived from this form of the GEPFS-criterion we use
the experimental evidence with a carbon fiber-epoxy resin composite under the
nomination of Morganite II studied by Wu and others [86]. The experimental
evidence with this composite gave the following failure stresses in simple tension and
compression along the three principal stress axes :

0.,= 1065.93 MPa 0= 0,,=42.40 MPa

0g,= 615.01 MPa 0.,= 0= 143.20 MPa

Figures 39 and 40 present the principal diagonal (0,,0,,)-intersections of the
EPFS and the GEPFS for the Morganite II composite presented in refs.[82 and 86].
While this (0,,0,,)-intersections of the EPFS for this material is a shallow parabola,
the respective parabola for the GEPFS is a significantly deep parabola, differently
oriented that the previous one.

Figures 41 and 42 present the intersections of the elliptic paraboloid failure
surface EPFS by the (0,,0,)-principal stress plane and the (0,,0,)-principal stress
isotropic plane. Both elliptic intersections present the typical shapes of oblong cigar-
like types of curves. Similarly, figures 43 and 44 present the same intersections but
for the generalized elliptic paraboloid failure surface.
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Fig.40 - The (0,,0,,)-principal diagonal intersection of the generalized elliptic paraboloid
failure surface GEFS for the Morganite II (carbon-fiber/epoxy resin) composite.
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Fig.41 - The (0,,0,)-principal stress plane intersection for the elliptic paraboloid failure
surface EPFS-criterion applied to Morganite II (carbon-fiber/epoxy resin) composite.



ON A GENERAL THEORY OF FAILURE FOR THE ANISOTROPIC MATTER 99

Morganite 1

Fig.42 - The (0,,0,)-isotropic principal stress plane intersection for elliptic paraboloid
failure surface EPFS-criterion applied to Morganite II (carbon-fiber/epoxy resin)

composite.
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Fig.43 The (0,,0,)-principal stress plane intersection for the generalized elliptic
paraboloid failure surface GEPFS-criterion applied to Morganite II composite (a)
and a detail of this intersection (b).
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Fig. 44 - The (0,,0,)-isotropic principal stress plane intersection for generalized
elliptic paraboloid failure surface GEPFS-criterion applied to Morganite II (carbon-
fiber/epoxy resin) composite.

It is clear from all these figures that, although there is a striking resemblence between
both groups of curves corresponding to either criterion, the oblateness and the extent
of the respective intersections are significantly different. This is due to the fact that
either elliptic paraboloid failure surface has a different inclination relatively to the
hydrostatic axis and the shallowness of these surfaces is much different.

4.3 A comparison of the different versions of the failure tensor polynomial

Several versions of criteria based on failure tensor polynomials (FTP), whereas
define identical values for the diagonal terms of the failure fourth-rank tensor, H, as
well as for the terms of the strength differential effect second-rank tensor, h, they
present differences between the off- diagonal terms of H. The three most important
versions correspond either to the Tsai-Wu criterion with the additional assumption
that H;, = 0, for i # j, [39,81], or to the Tsai-Hahn criterion, withH; = - 1/2 (H; H)"?
[80], or to the elliptic paraboloid failure surface criterion (EPFS), with H, = 1/2 (H,, -
H, - H)) [42-71].

The simplest form of the failure tensor polynomial corresponding to a
transversely isotropic material expressed in the (0,, 0,, 0,)-principal stress space is
expressed by :

H, ( 0.2+0,2)+H,,0.242H,,0,0,+2H,,(0,0,+0,0,)+h (0,+0,)+h,0,=1 (152)
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This expression, referred to the Cartesian coordinate system Oxyz, is expressed by :

H -H )X +—(H +2H, +H ,-4H )y +{—(2" “H,,-H, +H -H 2)—\/%(h1-h3)y+
2
4 Z
+—(3 2H  +H,.+2H ,+4H )+ —5 (2h1+h3)-1=0 (153)

Relations (152) and (153) for the EPFS-criterion, are given by :

H, (0 2+0,)+H,,0.2+(H,,-2H, )0,0,- H,,(0,0,+0,0,)+h,(0,+0,)+h,0,=1 (154)
and :
QH, -1H. )%+ 3 H, .y \/z(h h,)y+ —= (2h, +h,)z = 1
11,9 Baa P tn Taal gt Al Y. ol i (155)

For the Tsai-Hahn criterion, they take the form :
H, (0 2+0,5)+H,,0,>-H,,0,0,- (H, H,,)"*(0,0,+0,0,)+h,(0,+0,)+h,0,=1 (156)

and :

T ]
e h h 2
3n X2+%[§H11+H33]y +4l4§z oH - ) }\E(hrhs)jy*

12 1
o Lm0, 1) 2 +s @)z 1 . (157)

w]v—a

Finally, for the Tsai-Wu criterion, with H,=0, (i # j), they become:

H, ( 02+0,%)+H,,0,2+h,(0,+0,)+h,0,=1 (158)

and :
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H, x+—(H +2H,,)y*- [ LGl H3)z+f(h h)}

1 1
+73 QELH )7 o= Ol =1 (159)

For the intersections of these surfaces by the principal diagonal (0,0,,)-plane, we
must put that 6,=0,=9,,/+2 and 0,=0,. The general expression for this intersection of
the tensor failure polynomial surface for the transversely isotropic body is given by :

(HI1+H12)6122+H33032+2+2H,36,203++2h16]2+h303-1=O (160)

Relation (160) for the three versions of criteria take the form :
For the (EPFS)-criterion :

1/2(H,;6,,)+H,,0,2-+2H,,0,,0,++2h,8 ,+h,0,-1=0 (161)
for the Tsai-Hahn criterion :

12(H, 8,)+H,,0,2-+2(H, H,,)'?d,,0,4++2h §,,+h,0,-1=0 (162)
and the Tsai-Wu with H,=0 criterion :

H, d,,>+H,,0,++2h 8 ,+h,0,-1=0 (163)

The curves (161) to (163) corresponding to the (0,8,,)-principal diagonal
intersections of the quadric surface representing the FTP criteria delineate either an
ellipse or a parabola depending on the signs of the following matrices [78] :

(i) detA,>0 or detA,=0
(ii) detA,#0 and
(iii) (detA,trA,)<0 (164)

(i) For the EPFS-criterion :

Lo His
det A= 2 12
ESA H3;

V2
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T s o
e i +3
s H ( h \2
detA3_ il H h_3 =_ﬁlh +_3|
2 33 2 o
i o 5
7 2
(165)
trA. =S H
245 D33

The equation of the symmetry axis O’z’, of the parabolic intersection of the EPFS by
the (0,0,,)-plane is given by the second rank eigentensor corresponding to the zero
eigenvalue of the fourth-order tensor H and it is given by :

i H
> H336]2 ?0 =)
which yields :
1
9= 7 o,
and
tan 6 = 35.26° (166)

Relations (165) indicate that the (0,0,,)-intersection of the EPFS-criterion for
transversely isotropic materials is a parabola whose symmetry axis is parallel to the
hydrostatic axis 0,=0,=0, lying at a distance n, given by Eq.(64) :

(ii) For the Tsai-Hahn criterion it is valid :

h
i _]( H11H33 )
2 2
detA, = \ ) =0
'
I(H11H33 \I H33
O ay
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104
( b
B, [HH [ b
2 k 2 ) 2
( T/z

H h 1

==l 3 =1
A3— lk 2 ) H33 '2— ='[ H33 hl-‘_szllh’j]2 (167)

& 5 :
12 2

1
trA2 = (§H11+H33)

The zeroing of the determinant of the matrix A, yields the angle Op ,which is

1/2
0.=¢ n'l( H“ )
=T1a
i [ 2H88 (168)

expressed by :

By a straightforward analysis based on the properties of the parabola [78], it
can be deduced that the distance n, of the symmetry axis of the parabolic intersection

from the hydrostatic Oz-axis is given by:

)
hihy(H,,-2H,,) + /H  H,, (b -2h))
e Sy 2
H33 ety (H11'2H33)
(169)

(iii)  for the Tsai-Wu criterion with H;;=0 (i#j) it can be deduced that the intersection
of the surface expressing this criterion by the (0,8,,)-principal diagonal plane is an

ellipse, whose coordinates of its center are given by :

h1 h3
Orwe Zrw) = SOH, " WO, (170)

the equation of the ellipse is expressed by :
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2 2
Hiz ot Heoge el 1o h3 + h]
tifrwiti PagYow H,, T2H

(171)

where the (z,,, y,)-principal axes of the ellipse are parallel to the (0,0,,)-axes respectively.

Figure 45 presents the intersections by the (0,0,,)-plane of the three versions of
the failure tensor polynomial criterion for the oriented polycarbonate, whose failure
properties are given in table 1 as material A.

It is evident from these plottings that the EPFS-criterion and the TH-criterion
yield open-ended surfaces, whose (0,,,)-intersections, which are symmetric to the
failure surfaces, present the following differences. The EPFS-intersection has its
symmetry axis parallel to the hydrostatic axis, whereas the TH-intersection is
strongly inclined to this axis.

The TW-intersection is an ellipse, whose principal axes are parallel to the 0,-
and §,,- axes and its center is displaced inside the second quadrant of the (0,9,,)-plane
at a polar distance derived from relation (171).

Zry

oy
Z
(MPa) EPFS

Ztw) [180
(TW)

-720 -540 -360 -180 () AW
: B0 (MPa O

([EPFS)
-360

{PO)

B (TH) o

Fig45 - The (0,90,)-principal diagonal intersections for oriented polycarbonate
according to the three versions of failure tensor polynomial criterion EPFS : The
elliptic paraboloid failure surface, (TH) : The Tsai-Hahn criterion and (TW) : The

Tsai-Wu with H;=0 (i#j) criterion.
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Experiments executed by Bridgman [40,107] have definitely established that the
resistance to failure of all materials (isotropic and orthotropic) is much higher than
their resistance to failure in simple compression. This fact implies the principle that
the failure strength of materials to a loading mode approaching the hydrostatic
pressure should be very high, so that their failure surfaces should be open. Then, the
TW-criterion with H;=0, which yields a failure stress under hydrostatic pressure,
which is of the same order of magnitude with the failure stress in simple compression
is unacceptable, as it is also any other criterion represented in the stress space by a
closed surface. Furthermore, the Tsai-Wu criterion stating that all interaction (off-
diagonal) terms H, are independent and should be determined experimentally
constitutes, instead of a failure criterion, a curve fitting process, not based on any
phenomenological trend, and establishing only a failure condition with statistical
features.

The difficulty in executing complicated tests to define the failure characteristics
of anisotropic materials explains the paucity of such tests in the literature. The only
triaxial tests with anisotropic materials existing in the literature are those executed
with mildly anisotropic high-polymers, mechanically or thermally deformed, to lend
them some amount of orientation as it is the oriented polycarbonate (PC) [12,13,18].
There exist also some triaxial tests with foams and porous materials, as well as with
sands and rocks, but all these results are not sufficient for studying the failure loci of
these materials.

Of higher interest is the Tsai-Hahn criterion. This form of criterion satisfies the
single sheet open-end condition, since it represents an elliptic paraboloid surface, as it
does the EPFS criterion. Comparison of the intersections of this failure surface by the
principal stress planes and the principal diagonal planes, which indicate efficiently the
behavior of the criterion in three-dimensional loading modes, yields satisfactory
results although less accurate and with larger discrepancies from experimental
evidence than the respective intersections with the EPFS-criterion [90].

Furthermore, it should be noted that the Tsai-Hahn form of tensor polynomial
failure criterion was expressed by [91]:

(H,0,0)) 52+ (Ho) s - 1=0 (172)

where s expresses the strength ratio at failure given by s = ¢, /0, where o,, denotes the

allowable or maximum stress components at failure.
Equation (172) expresses the generalized Mises criterion for orthotropic
materials which after the following substitutions :
f 1/2 :
0 = Hii o, (1=1%270)
(173)
takes the form :
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(G +2H} 4545,) %+ (H[5,+H}5,) s - 1 =0

(174)
with :
H H H
* {1 _# * o 1 * e 2
H DIt 1/2 Hl o~ 1/2 Hz i 1/2
(H11H22) (Hn) (sz)
(175)

Then, Tsai [91] simplifies equation (174) by an appropriate coordinate
translation, in order to eliminate the linear terms in Eq.(174) using the following

relations :
ie=ara 110 ¥ i)
0! =@, i+ =
<8,
(176)
e a7 [ Hz’H12H1
U2 % I 25 =
s 12
and introduces the quantity k as follows :
¢ A L e Sk
Foal N ()
(177)
Then it is valid that :
0,2+ 2H,,'0,'0," + 0,2 = k? (178)

In Equation (178) the shear o,-stress is assumed to be zero, since the failure loci are

considered in the 0,,0,-principal stress plane.
Now, Tsai comparing relation (178) with the typical Mises failure criterion in

the principal stress plane derives readily that it should be valid that :

Hi= P (179)
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Equation (179) introduced into the first of relations (175) yields :
1
H,= 5 (H, H ) (180)

However, this relationship is only valid for the translated coordinate system
(0,",0,") and not for the initial one (0,,0,)-frame, as it is accepted by Tsai [91]. This
could be valid for both systems only if H=H,=0 that is, if the strength differential
effect is neglected, fact which leads this criterion to the previous criteria of the Mises-
Hill type.

Therefore, the Tsai-Hahn criterion, which indicates an inclination of the
respective failure surface to the hydrostatic axis, should also by rejected for the
additional reason that this failure surface, leaning toward the one side of the
hydrostatic axis presents some unbalance, approaching an instability condition.

It is worthwhile indicating that although large differences exist between the
various versions of criteria based on the failure tensor polynomial, the respective
failure loci for a biaxial loading mode of the materials do not differ significantly
between them. Indeed, the intersections of the quadric failure surface by the
principal stress plane is an ellipse whose coordinates of its center are expressed by
relations (79), whereas the inclination of its principal axes relatively to the principal
stress axes is given by Eq. (81): Furthermore, the lengths of its principal semi-axes
are derived from relations (83) :

112 12
[ detA , J { detA , :,
“m=[ "Rdeta, | 2™ %= "} dera, (181)
and A, A, are the roots of the characteristic equation :
A, - (H; +HpA + (H,H;-H?) =0 (182)

Using the above relationships for determining the positions, orientations and shapes
of the intersections of the respective failure loci by the principal (0,0,)-stress plane for
the transversely isotropic body with H,=H,, and h=h, we readily derive the
coordinates for the centers of the elliptic intersections of the respective failure

surfaces given by :

i)"“ FEor EPES :

2h +h, h H,,+2h,H | ]

(00,0 ):[ E i
o 4H1 1H33 H33(4H1 1'H33)
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if) ‘For TH::
12 12
(@, o) = ChyH, Hy) 42 Hy o hy(H Hy) 420 H
1185 3H, Hy,
and
iii) For TW :
0 0 l: hl h3 ]
e 183
b2 2H 2H,;, (183)

Using the above relationships we have plotted in Fig. 46 the (0,,0,)-intersections for
oriented polycarbonate based on the values of failure stresses of this material in
simple tension and compression along each of the principal directions. In the same
figure we have also plotted the experimental results from the tests of refs. [74] and
[92]. All intersections for the three distinct versions of the tensor polynomial
criterion should pass through the points A,A’ and B,B’. Therefore, there is not much
ground for differing these three ellipses. Furthermore, the expected scatter of the
experimental results, added to the previous property of the ellipses, does not leave
enough ground for deciding which one of the three criteria corroborates the
experimental evidence.

Fig.46 - The (0,0 )-principal stress intersections for oriented polycarbonate
according to the three versions of failure tensor polynomial criterion EPFS : The
elliptic paraboloid failure surface, (TH) : The Tsai-Hahn criterion and (TW) : The

Tsai-Wu with H,=0 (i#j) criterion.
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We examine the failure loci in the transverse (0,0,)-plane of symmetry for the
three versions of the criterion. The transverse intersection of the general quadric
surface, by the plane of symmetry of the material, in the (0,0,)-principal stress
coordinate frame, is given by :

H, 1(0%+0§)+2H120102+h101+h202-1 =0 (184)

where the diagonal coefficient H,, is expressed by :

(i) For the EPFS:

1
H, =7(H33—2H“)
(ii) For TH: (185)
I8l =i h and
12 9
(iii) For TW with H,=0 for i#j :
Hy;=0

For an arbitrary biaxial in-plane loading mode of the plate with o,#0, relation (184)

becomes:
H, (0+02)+2H, 0,0,+h,(0,+0,)-1 =0 (186)

Xy -"x-y

whereas, for an equal biaxial in-plane loading of the plate (hydrostatic loading), with
0,=0,=0 relation (186) becomes :

2(H,+H, )0’+2h,0-1=0 (187)
where the values of the H,,, H, -coefficients are given by :

(i) For the EPFS-criterion :
1
Hyy = 3 {(4H  +H  +H )+ (4H, -H, ,-H ) cosdf }
(188)

Hyy == (GH 4H -H )-@H “H.  -H.) cos40 }

1
8

(ii) For the TH-criterion :
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Hyy =g (GH, +Ho ) + GH, H) cosd0 )

(189)
1
Hy, =- 3 {(H”+H66) + (3H“- Heo) c0s40}
and
(iii) For the (TW)-criterion with HI.]=O (GEp)s
1
Hyy = 3 {(6H11+H66) + (2H11-H66) c0s40}
(190)
1
H,, = 3 (2H,,-H,,) (1-cos46)
where 0 is the angle subtended by the Oxy-system and the 0o,0,-system.
Relation (187) for the three different criteria studied becomes :
(i) For the EPFS : H,,02+2hc-1=0
(ii) Forthe TH : H,02+2h0-1=0 (191)
(iii) For the TW: 2H,02+2ho0-1=0

Relations (191) indicate that any in-plane hydrostatic loading of a plate
corresponding to a transverse intersection of a transversely isotropic material, so
that its strong axis is parallel to the thickness of the plate, is invariant and
independent of the angle of orientation of loading with respect to the principal
directions of the transversely isotropic material.

Relation (186) implies that the elliptic intersections of the failure loci by the
(0,0,)-transverse isotropic plane have their major axes, lying along the bisector of
the first quadrant (0,00,)-right angle, equal to the respective major axes of the ellipses
corresponding to an hydrostatic loading of the plate where o = 0,= 0, since the same
equality of applied stresses 0,, 0, is also valid for them. This is valid for any loading
mode of the plate, where the external loading is either on-axis (6=0°), or off-axis
(6+0°) oriented, relatively to the principal material directions. On the contrary, the
other principal axes of the ellipses (minor axes) depend on the 0-angle with the
maximum deviations appearing at 6=45°.

Figures 47 and 48 present the elliptic intersections of the three failure loci
studied for the oriented polycarbonate. Figure 47 corresponds to angle 6=0°, whereas

Fig.48 to angle 6=45°.
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Fig. 47 - The (0,0,)-principal stress intersections with 0=0° for oriented
polycarbonate according to the three versions of failure tensor polynomial criterion
EPEFS : The elliptic paraboloid failure surface, (TH) : The Tsai-Hahn criterion and
(TW) : The Tsai-Wu with H,=0 (i#j) criterion.

By comparing the ellipses of the pair of figures one may realize at once the
coincidence of the major axes of the respective ellipses, for different 0-angles,
whereas their minor axes differ significantly. It is wothwhile remarking that the
oriented polycarbonate is a compression strong material (trh=(h,+2h,)>0) and the
larger differences in the failure stresses between the various criteria appear in the
third quadrant, where this material presents its maximum strength.

By comparing the failure stresses for hydrostatic loading of the plates of the
materials corresponding to their transverse isotropic planes it is obvious that the
ratios of these stresses for the various versions of the failure tensor polynomial
criterion are considerable. These ratios are stronger for the mode of loading for which
the material is more resistant, that is this difference in failure stresses under
hydrostatic in-plane loading becomes higher in the compression-compression zone of
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Fig. 48 - The (0,,0,)-transverse isotropic plane intersections with 0=45° for oriented
polycarbonate according to the three versions of failure tensor polynomial criterion
EPFS : The elliptic paraboloid failure surface, (TH) : The Tsai-Hahn criterion and

(TW) : The Tsai-Wu with H,=0 (i#]) criterion.

loading for compression-strong materials and in the tension-tension quadrant for the
tension-strong materials. Thus, for the oriented polycarbonate the ratios of failure
stresses under hydrostatic in-plane compression is given by :

Oqwy = (-73.10) : (-51.12) : (-33.64) MPa

(0]

O(EPFS) : (TH) :

These large differences in strengths given by the different versions of the tensor
failure polynomial criterion in plates corresponding to transverse cross-sections on the
isotropic plane of a transversely isotropic material constitute a certain technique for
deciding which version corresponds to reality, corroborating existing experimental
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results and they justify the acceptance of this method for the selection of the best criterion.

Furthermore, since biaxial tests of lateral hydrostatic tension or compression in
thin plates are rather easy to be executed and yield reliable results, the method is
additionally convenient to be applied in a laboratory facility disposing a triaxial type
of testing machine commonly used in soil and rock mechanics.

A series of tests was executed with thin plates under hydrostatic pressure, or tension.
Although these experiments were only preliminary, they indicated clearly that the
experimental data are in favor of the results derived from the EPFS-criterion than
from any other version of the failure tensor polynomial criterion. However, further
sophisticated experimental evidence with convenient equipment is needed for rising
the accuracy of the experimental results.

5. THE SPLITTING OF ELASTIC ENERGY IN TRANSVERSELY
ISOTROPIC MATERIAL

5.1 Introduction

The decomposition of the fourth-rank tensors representing either stiffness, or
compliance, or failure, has been extensively used to describe efficiently either the
underlying geometry symmetry in crystals, or the mechanical properties of anisotro-
pic materials, because the structure of the fourth-runk tensors reflects this symmetry
and, thus, it can reduce the number of independent components describing this sym-
metry. Thus, Nye [93] has shown that a number of such relations may be used to
introduce fourth-rank tensors describing the elastic stiffnesses and compliances,
elasto-optical and piezo-optical coefficients and other properties in crystals. More
recently Srinivasan and Nigam [94] have introduced appropriate decompositions of
the tensor structure in order to reflect a valuable insight and simultaneously to
achieve simplifications in the calculations of their inverses and their inner products.
Similarly, Walpole [95] has presented a reduction of the algebra of the fourth-rank
tensors to irreducible subalgebras, which were simpler than the initial one and,
therefore, they facilitated operations between these tensors. In this general form of
decomposition Walpole included also the spectral decomposition of the fourth-rank
tensor and applied these decompositions to define the properties of various crystal-
line systems. However, the decompositions used by Walpole in his applications do
not correspond to spectral ones, except the trivial cases of the isotropic and the cubic-
system fourth-rank tensors. Rychlewski [96,97] has shown the possibility to decom-
pose the elastic stiffness and compliance fourth-rank tensors by using the spectral
decomposition. Indeed, the definition of energy orthogonal stress states was antici-
pated by Rychlewski [97]. This term denotes stress tensors mutually orthogonal and at
the same time collinear with their respective strain tensors. It was also shown by
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Rychlewski [96] that, if a given stress tensor is decomposed in energy orthogonal
tensors, then these tensors also decompose the elastic energy function. However,
Rychlewski did not proceed to establish any concrete type of decomposition suitable
for the general anisotropic material, although he proved the fact that the spectral
decomposition of the fourth-rank tensor of compliance or stiffness of the anisotropic
material is always possible and it constitutes the simplest one.

The decompositions developed by Walpole in his crystallographic applications
[95] do not belong in general to spectral decompositions,since in these decompositions
the general symmetric fourth-rank tensor is constructed by the linear combination :

S =aE, +bE, + ¢(E+E,)) + {F + gG (192)
whereas the spectral decomposition [98,99] used in orthotropic materials has the form:
S=MLE +\ME +ME, + \LE, (193)

where E, (i=1,2,3,4) and F, G are components of the elastic energy function and the
A’s are the eigentensors of the compliance tensor, S, whereas the quantities a, b, ¢
are not eigentensors of S. The only common property between the two forms of
decomposition is the identity of the idempotent tensors F and G with the respective
E, and E,, whereas the E, and E, in relation (192) are totally different than the
respective E, and E, tensors in relation (193). On the other hand, the energy-orthogo-
nal decomposition of the space of second rank symmetric tensors described in refs.
[84,98] and especially of the stress tensor ¢, was derived by means of the spectral
decomposition of the symmetric fourth-rank tensor, S, which defines, in an
unambiguous manner, the positive definite elastic energy function:

2T=0'S 0 (194)

The decomposition of tensor ¢, for the transversely isotropic solid, gave four
orthogonal stress states, which decompose the elastic energy function in a clear and
radical manner. Two of them, i.e., ¢, and o,, are solely associated with a distortional
elastic energy, whereas the remaining two denote in general both voluminal and
distortional elastic energies [99-101]. In this way it is succeeded to establish energy
orthogonal stress- and strain-states for the general orthotropic and particularly for the
transversely isotropic material, based on the spectral decomposition of the complian-
ce and stiffness tensors and to separate the SED into well-defined components.
Similar decompositions were recently introduced by the author [58,102], based on
geometric properties of the stress- and strain- vectors of the transversely isotropic
body, which, however, do not possess the generality and the elegance of the spectral

decomposition presented here.
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Previous efforts were spent to extend the splitting process valid for the isotropic
elastic body, where the elastic energy density can be separated into two energy-
orthogonal subspaces of loading, that is to the spherical and the deviatoric tensors,
which constitute eigentensors of the isotropic S-compliance tensor. These compo-
nents correspond to the eigenvalues 1/3K and 1/2G respectively. However, it becomes
evident from the theory of the spectral analysis that this type of decomposition of the
elastic energy density for the general anisotropic elastic body into a component
contributing to the volume change exclusively and another component corresponding
to a distortional type of energy is impossible. The necessary condition for this
decomposition to be valid is that the strain-eigentensor representing the volume
variation should be an eigentensor of the compliance tensor S. This means that the
spherical tensor 1 should be an eigentensor of S. Then the orthogonality conditions
imply that the remaining eigentensors of 8 should be deviatoric tensors. Only in this
case we could have these two orthogonal subspaces of the eigentensors, and the
decomposition of SED into the dilatational and the distortional component is possible.
But, this is not the case for the anisotropic body, since for the anisotropic body the

decomposition :

| |
T(o) =T(op) + T(o ) = ﬁ (tr 0)2 + %IL fo" - % (tr 0)2 l
(195)

is not possible, as it is for the isotropic body.

However, the spectral decomposition of the energy density for the transversely
isotropic body presented here is equally general and is based on the same principle.
Indeed, it is futile to search for a decomposition of the type (195) for the general
anisotropic body, since this decomposition holds only for isotropic bodies, as well as
for cubic crystals. Thus, the great efforts spent by Olszak and his coworkers [103,104],
motivated by the possibility of introducing a generalization of the Huber-Mises-
Hencky criterion to anisotropic bodies and aimed to establish the distortional
component of the strain energy density as a critical failure quantity, did not succeed
for the abovementioned reasons and it was abandoned by its inspirers.

A theory will be presented here, which succeeds to decompose spectrally the
compliance (or stiffness or failure) tensor for a transversely isotropic material, and to
evaluate its characteristic values. Based on the properties of this decomposition,
energy-orthogonal stress states were established.

5.2 Spectral decomposition for the transversely isotropic fourth-rank tensor

Consider the decomposition of the compliance tensor S of a transversely isotropic
linear elastic solid. Of course, any other similar tensor related with different material
properties will decompose in the same manner. We suppose the Cartesian coordinate
system, which the stress and strain tensor components are referred to, being oriented
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along the principal material directions, with 3-axis being of infinite symmetry of the
material and it is normal to the isotropic (transverse) plane. Using engineering con-
stants with subscript (T) to denote elastic properties on the isotropic plane and sub-
script (L) the corresponding ones on the normal (longitudinal) plane, components of the
S-tensor associated with the adopted Cartesian system are given by:

S = Sy = 1/E,, Sy=1/E,
Snzz ¢ Szzn g VT/ET
Sii3 = Sasn = Spgs = Sy, = -VJ/E, (196)

Sys = Sy = Sy = Sy, = 1/4G,
Sisis = Sizs = Syis = Sy = 1/4G
S1212 = Slzzl N Sznz T Szm =3 1/4GT

All remaining Sijkl are zero. Moreover, between the engineering constants of the
transverse plane the following well-known isotropic relation holds :

ey (1+VT)

2G, E;

(197)

The eigenvalues of the associated square matrix of the rank six to tensor S
defined by (196) are expressed by [100] :

= b
2E 2E
T i L i ELJ
1/2
2
g A [(I-VT) ! J 2
= 4+ —== - - A | + —
4 ZET 2E, 2ET 2E, Ei (198)

with the two first eigenvalues A, and A, being of multiplicity two.
The minimum polynomial of tensor $ is a quartic and has as roots the
eigenvalues A, A,, A, and A,. The associated form idempotent tensors E_ (m=1+4) of
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the spectral decomposition of § are given by relations (29) of ref. [101]. It is further
valid for the eigenvalues (198) and the corresponding idempotent tensors E,, E,, E,
and E,, to whom the unit tensor I is spectrally decomposed, that :

E+E+E,+E, =1 (199)
and the tensor S is expressed by relation (193).
Furthermore, the eigenangle w, defined in ref.[100], is expressed by :
. 2 e
tan 2w= eses il i
l-vT)_ e } (200)
2Er/ 2E,

If the stress states ¢, constitute the eigenstates of tensor § they satisfy the

relationship:
S'06,=\0 (201)

m m-m

with the index m varying between 1 and 4 and the A_-values given by relations (198).
These stress states are defined by :

6 =E ‘o (202)

where ¢ is the contracted stress tensor written as follows :

¢6=[0,0,0,0,0,0.]" (203)

Relations (202) imply a series of calculations which finally yield :
*IT

r
1 1
G, = ILf (0]-02), A (0,-0,), ()20 0] 06JI

i
o, =100, 0, 0, 0, 05, O] 204)

ol cosw(01+02) + sinu)o3J {L COoSW, 71_2— cosw, sinw, 0, 0, OJ

& '[JE 2
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T
i = | i 1=
6, =|— sinw(o,+0,) - COSWO [— sinw, — sinw, -cosw, 0, O, O} (16)
; [5 | 3) 2t
with :
6,+6,+0,+0,=0 (205)

Relations (204) imply that the stress eigenstates corresponding to spectral
decomposition of the compliance tensor § for the transversely isotropic materials
brake down the generic stress tensor ¢ into four elements. The states o, and 0, are
shears, simple together with pure, and pure ones respectively and they are
independent of the eigenangle . The o,-state represents an equilateral stress state in
the isotropic plane together with a superposed tension along the infinite symmetry
axis of the material, whereas the ¢,-state replaces the uniaxial tension by uniaxial
compression along the symmetry axis. The sum (0,+0,) is the supplement of the
(0,+0,)-state as it is indicated by relation (205).

To these four stress-tensors o, to @, are associated four strain tensors €, ¢,, ¢,
and e,. The two first strain tensors correspond to a pure distortion of the solid without
any volume change. Therefore the following part of the elastic energy for the
transversely isotropy body

2T, = M,[(0,-0,)° + 402] + 4}, [c2+c?]

(206)

is purely distortional.
Then :

(1+v.)
=

2
4= ZE_ [0 0) 0] + & [G30]]

2
G,
(207)
The remaining states o, and ¢, of the decomposition correspond to mixtures of
distortional and dilatational components of elastic energy. Therefore, the
corresponding strain tensors &, and €, produce both volume changes and distortions of
shape. Then, we have :

1/2

1-v, 1-v 2v?
1 L
2T=T(0y)+1(0,) = [ZET % %l i (5E—T g TJ % F A
T
L
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2

X {g sinw(0,+0,) - cosu)(03)}

(208)

This part of the elastic energy depends on the value of the eigenangle w for

each particular orthotropic material and is associated with shape and volume changes
of the material.

$.3 A generalization of Beltrami’s ellipsoid for the anisotropic material

If we project the eigentensors ¢, given by relations (204), where they are
referred as they stand to a generic Cartesian system (0-0,0,0,), on the principal
stress space (0-0,"0,"0,") indicated in Figs. 49 & 50, it can be readily derived that the
projection of the eigentensor @,, which is expressed as a pure shear loading, becomes
equal to zero in the principal stress space. On the other hand, the projections of the
stress eigentensors 6,, ¢, and ¢, are generally represented by a tri-orthogonal frame of
vectors, which are associated with the respective unit strain-vectors e, e, and e,
defined as follows :

T

elz[%’%’oJ

=T
COSMW COSW .
e : , sinw
3 { A |
(209)
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| S o |

It can be readily derived from the second and third of relations (209) that the vectors
e, and e, lie on the principal diagonal (0,0 ,)-plane, since they are equally inclined with
respect to the principal stress axes 0o,* and 0o,*. Furthermore, vector e, subtends an
angle equal to (w-1t/2) with the positive 0,*-axis. Similarly, the vector e, subtends an
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Fig. 49 - Representation of the eigentensors of the transversely isotropic compliance
tensor in the principal stress space (00,0,0,) () their projection on the (0,9,,)-plane
(b) and the projection of the idempotent tensors ¢ and e on the - plane (c).
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