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FEQMETPIA— On maxima or minima of a group of plane curves®*, 5y
Christos B. Glavas. 'Avexowwddny 90 ot x. “Twdvy. Eavddun.

Let an initial curve C° with equation f(x,y)=0 and two plane coor-
dinate systems (x,y) and (x’, y') be given. These systems are supposed to
be analytically and geometrically equivalent'. Let the formulae of transfor-
mation from one system to the other be

x by /
x’=a1x+b,y] = v ba / A (1)
¥ =a,x + b,y s _laa %]/
y= /A
a3 ¥ /
a; by

where A = and A#0. The y maximum or minimum, if it exists, of

Ay Dy
f(x, y)=0 is denoted by Moy (fig. 1). To determine the values of the coordi-

Fig. 1.

nates x and y of Moy suffices to solve the simultaneous equations:
f(x, y)=0, fx(x,y)=0 (@)

0
If fxlx,y)= B f(x,y) is symbolized by @,(x,y) then the above relations

may be written:
f(x,y)=0, @.(x, y)=0 (2a)
Let x and y in f(x,y)=0 be substituted by x’ and y' respectively.
Then f(x, y)=0 and f(x’,y)=0 are essentially the same analytic relations
but represent geometrically equivalent plane curves®.

* XPHETOY B. FEAABA, Méyiote: i} EAdxiota Sp&Sog EMmESWV RXMAVARY.

! C. B. Gravas, The principle of geometrical equivalence and some of its conse-
quences to the theory of curves, Proceedings of the Academy of Athens 32 (1957), 122 - 24.

2 Loc. cit.
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Clearly the values of x' and y’ of the y’ maximum or minimum of
f(x’,y’)=0, denoted by My’ are the same respectively with those of x and
y of Moy Of course the points Moy and My’ are different.

Now let x" and y" in f(x’,y") be substituted by their equals in for-
mulae (1). Then we find the curve f(a;x 4+ b,y, a:.x 4 b,y)=0. The y maxi-
mum (My) of this curve is determined by the solution of the equations:

flax + by, a,x+b,y)=0, fx(a,;x + b,y , asx + bey)=0 (3)
0
Let f(x, y)E@ f(x,y) be symbolized by @.(x,y). Then:

fx(a;x + by, a,x + byy)=

=@,(a:x + byy, a:x + byy)a, + @s(a,;x + b,y , a:x + byy)ag=0

Therefore the relations (3) become:
f(a,x + by, a.x + byy)=0 | (3a)
@:(a;x 4 b,y, a,x 4+ byy)a, + @alaix + byy, a,x + byy)a, =0 | N
Again x and y are replaced in f(a,x 4+ b,y, a:;x 4+ b.y)=0 by x’ and y’
respectively. The y ' maximum or minimum (Msy’) of the new curve
fla,x”+ b,y’, a,x "+ byy)=0 is determined by values of x’ and y’ equal re-
spectively to those of x and y of Miy. Also substituting x’ and y’ in the
last relation by a,x 4+ b,y and a,x + b,y respectively we find a new curve
the y maximum or minimum (M,y) of which can be determined by the si-

multaneous solution of the equations
f((ana -+ b13«2)x =k (albl <+ bxbz)y , (a2, + abo)x + (a.b, + baz)Y) =0

-+
(px(Ax(x»Y); AE(X)Y)) (312 == ba,) + (pz((Al(ny), AA')(XYY)) (a;a, + 32b2)=ol : )

where A,(x,y) and A,(x,y) are equal respectively to the first and second
expressions inside the parenthesis of the first of the above two equations.
This process may be repeated indefinitely. But if we reverse the pro-
cess and x and y are substituted in f(x, y)=0 by their equals in formu-
lae (1), then we get the equation:
f( x /A, Bk | /A):O
y" b / sy Y’ /

It is well understood that the latter equation represents the same curve C°

with f(x, y)=0 but in the coordinate system (x,y’). The y" maximum or mi-
(Moy") of C°, if it exists, is determined by the simultaneous solution of the
following equations:
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f( X,bl /A, alx’ /A ):O

v’ bs / P / (5)
x' b [, |aax’|/ ) b (x' by /., |aax’| [/ ) — ‘

1 ’ A) " A ~+ 9 A’ , A . :0

% ( y b / as ¥ / A ¢ y bz/ A,y / A

Let x” and y’ be substituted by x and y respectively in the first of
x b, / )
AN =0
/

y b,
represents a curve C ! geometrically equivalent to the curve C° As before

a; X

a, y

/A
/ )

the equations (). Then the new equation f (

the y maximum or minimum (M—yy) of C! corresponds to the same nume-
rical values of x and y with those of x” and y’ respectively of Moy'.

Now let x and y in the latter equation be substituted by their equals
in the formulae of transformation (1). Then the y’ maximum or mini-
mum (M—y') of C~' can be determined by the solution of the following

simultaneous equations

X' Ex b, ‘ // & X/El //

A T IR L4, O P

a, X b |/ ‘ n a, X ‘/

a,y’ y ay’l|/ | (6)

’ 7 ’ r b22+b1 a
o (A0, 7, A y) - (P ) +

‘v ] (P —a,a;,—a,b
+ 0. (A, ¥), As(x',¥))- (ﬁ ! _s): o

where A,” (x,y) and A,’ (x,y') represent the first and second expressions
respectively within the parenthesis of the first of the above equations (6).

It is now clear that one can continue in the same way and write
the equations which determine the maxima or minima M-—sy, M_2y',

M3y, M_sy',.... The first observation is that each of the pairs of points
(MOY) Mly I)) (I\/IIYs M?Y,)y (M2Y) M3yl)| ey (M“)’y M(“+1)Y ') Yoo and (Moy', M—IY)
(M_1y", M-2y), (M 25, M 35),..., (M—ny, M—(nt1)y) ... represent ma-

ximum or minimum points which are determined by the same numerical
values of the coordinates x, y and x', y’ respectively. It now remains to
investigate the rest of the maximum or minimum points.

Looking at the systems of equations (3), (4),..., and (5), (6), ..., which
determine the values of the maximum or minimum points Miy, Mey,... and
Moy, M — 1y , ... respectively we see that the first of equations (3) is pro-
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duced from the first of (2) by the substitution in the latter of x, y by
a,x + b,y and a,x 4 b,y respectively. Similarly the first of equations (4) is
produced from the first of (3) by the same type of substitution and so simi-
lar remarks hold for the second equations of the systems (5), (6),.... The
first of equations (5) can be found from the first of (2) by the substitution

% 4by /
/ a y /

v bs
(5) by the same type of substitution and so on and so forth.
The set of the first equations of the systems (2), (3), (4),... and (5)
(6),... conmstitutes a cyclic group under the following law of composition

of x, y by /A, el A respectively. Also (6) can be found from

symbolized by a small circle «o».
Given two of the above equations, say f(Al (%, y); A, (x, y)) =0 and

£(B.(x,v), Bilx, y)) =0, then:
[£((Aux, ¥), Aslx,y))=0]o[f (Bilx, v), Bi(x, y))=0]=
Z[f(Al(Bn Be), An(Bn Bz)) = O]

In other words x and y in A,(x,y), A, (x,y) are replaced by B, (x,y), Bi(x,y)
respectively. The proof that the above set is a cyclic group can be made
on the same lines with the one already given'. The identity element in this
group is the initial curve f(x, y)=0.

Let the second equation of (2a) be written as @,(x,y) - 1 4+ ¢@:(x,y)-0=0
Then the second equations of (2), (3), (4),... can be found from their prece-
ding ones if in the latter x and y in ¢, and @, are substituted by a,x + b,y
and a;x+ b,y respectively. The coefficients of ¢, and ¢, in each of (2), (3a)

b
(4),...are the product of the matrix (al l) by the matrix of the coeffi-

as by
cients of @, and @, of the preceding equation. For example the coefficients

of @, and o, in (4) are the product:
<31 b,) <a1 ) o <al°+b1a2 )
a, by as a8 = aghy /'
where a; and a, are the coefficients of ¢y and ¢, in (3a).
Similar remarks hold for the second equations of the systems (g)

6),... . Here ¢ and @, of each equation can be found from ¢, and @, of
its preceding one if the variables x and y in the latter are replaced by

1 GrAavas, op. cit., p. 126=28,
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x b a X ; .

i ' /A and | , / A respectively. The coefficients of ¢; and ¢, in (5),
v be |/ ay’l/
(6), ...are the «inverse» of those in (3a), (4), ... respectively. Let equations

(1) be written as:

X == ‘E)?_ X' bl ’
x’:alx—l—blyi i a7

Y =a.x + bey L

_a2 ; a_l ,

One can see that to go from the first system of (la) to the second x" and y’
should be interchanged in the former by x and y respectively. Also the
coefficients ay, by, as, by, in the first system of (la) should be substituted
by bs/A, —by/A, —as/A and a;/A respectively.

Now the coefficients of ¢; and ¢ in (3a) are a; and a, respectively.
The coefficients of ¢ and @, in (5) are by/A and —ay/A. The meaning of
the term inverse coefficients is based on the fact that the two transforma-
tions of (la) are such that if one replaces x and y in the first (or x’, y’ in
the second) by x” and y” (by x and y) respectively taken from the second
one (from the first one) then the result is the identity transformation x' =x
and y’=y (or x=x', y=y )"

It is now easy to realize that one can find all second equations of
the systems in question if one knows the initial curve f(x, y) =0 (and conse-
quently @i(x,y) and @(x, y)) and the transformations (la).

Let the first equation of (2a) be solved with respect to y. Let the so-
lution be y=o(x). If y is substituted by ol(x) in the second equation of (2a),
i.e. qilx,y)=0, then ¢ ((x, o(x)): 0. Suppose that one root of this equation
is x=xo. Then by substitution yo=o{(xo). Therefore (xo, U(Xo)) are the values
for which (1a) may have maximum or minimum.

It now follows that the first equation (3a) solved for a;x + b,y will give:

asX + by =o{a;x + byy)

Substituting this value of asx + b,y in the second equation (3a) we
shall get:

@i(aix + byy, olax + b1y)) a1+ @ (arx + by, olagx + bxy)) ag =10 (A)

1t A. D. CampBELL, Advanced analytic geometry, New York, John Wiley and
Sons, Inc., 1938, p. 14-15.
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Suppose that the last equation has been solved for a;x + byy. Then
its solution will be a function of the coefficients a; and a,;. Hence we may
write :

aix + biy=0olas, a,)
To find therefore the values x and y of the Miy maximun or minimum
suffices to solve the followingssystem of equations:

aix + biy=lar, a:), a:x + bey=o(w(as, a,)) (2a)’

It is not difficult now to see that the next maximum or minimum
will be determined by the system:

(a1? + bras) x + (a;b1 + bybs) y = @(as® + bya,, a1, + asb,)

(a1a, + agbs) x + (ashy + bs?) y = G(CP("JH2 + bjaz, aa, + aZb?)) ‘ s

This process may be continued on indefinitely.
In a similar way one can solve the systems of equations (5), (6),....
The solutions of (5) and (6) may be written :

X’ bll b /
x by 9 y byl / by® + bya, —(a1az+azb2)
bg As . AB-:(;) 2 2
[ B=o{%, 2 x|, At o, A
y bel/ ’ ay|
el b2 12 a X, bl ’ /
/ A=o ® K’ A Vi b? / - b";"blaz —(alag+agb2)
a, y’ / - ' / AN'=o|® A? A?
1 X )
al |/
2 a2 ¥ /

bx "= bry "= A(bu/A, —as/A) } )’

—asx +ary = Ao(o(bs/A, —as/A))

— (a3, + asbo)x "+ (a1® + ashy)y’ =A%0( ((y*+ bray)/A?, —(asas+ ayb,)/A?))

The solution of the system (2a)” gives:

/

A) Yi=

(bs? + ayb1)x "~ (byb, + ajaz) y ':AE(D((bzg-f- byas)/A*, —(asas + azbz)/An) J ©6)’

ar oy, as) /

/A (2a)”
/

B .CP(an 32) by
~ Jo(ptar, ay) b

X1

/ az 0((13(31‘ 32))
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The system (3a)" also gives:

o(a? + byas, ajas + ashs)  (ayhy + byb,) /
Xy = / A2
o((p(af +bias, aja; + a'lbs)) (asby + b2?) //
(3a)”’
(a:”+ bias)  @ar”+ bras, a,as + ashy) /A”
Yz =
(a1ay + ashy)  ololas® + biae, aas + ashs)) |

It now becomes clear that to find xa,ya (n=0,1,2,...) suffices to cal-
culate A" Then the two elements of the first column of A" are the expres-
sions inside the parenthesis of the functions ¢ and o of the determinant of
the numerator of xn and ya. The other two elements of the determinant of
xin are the two elements of the second column of A" Also the elements of
the first column of A" are the two elements of the first column of the de-
terminant of the numerator of yn.

Solving in a similar way equations (5)” we find :

| |Awbo/8, —aald)  —bi | [, b,
Xo = )
Aolop(ba/A, —afA) g | —a &
b Ag(ba/A, —aslA) | [1p, —b,
Yo'=
—ag AG((D(bQ/A, —azlA)) // g

But the common denominators of xo, yo are equal to A. We may therefore

write xo and yo as follows:

@(bs/A, —as/A) — bi/A /
Xo’= / A_l,
0(¢(b2/A; —az/A)) aI/A /
bs/A @(be/A, — ay/A) / ]
o = / A_l (5),
—'32/A O(CP(bz/A» —'32/A)) /
Here A '= e L , 1. e. the elements of this determinant are
—azlA al/A
the inverse of those of A. Also we find :
, A’(P((b22 =t b1a)2/A’, —(aiaz + azbz)/AQ) —(b1b2 4 ayda) / .
e 2 (a T4 a b
A’o(m(bz’ + biay/A?, —(a.as + axbs)/A )) . g
, by’ + asby A%q((b? + bran)/A®, —(asaz + arby)/A?) /A
ihsi= P
—(aras + azb,) A20((P((b-22+ biay)/A? —(a1az + a2b2)/A‘2))l /

33
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Or:
5 Cp(bzz ol blag/AQ, = (813.2 - asz)/N) “(b]b‘_) i 3132)/A2 / A-2
N
olplbo? + brag/A®, —(a,a3 + asba)/A?)) 2,7 + ayh,[A* /
()’
y’ bz2 + azbllAg Cp(bg + blao/A alag + a2b2)/A ) A—2
_1:
—(araz + azhy)/A* o(qp (ba? + bras/A?, — (asas + ashs)/A? )) //
The remarks made before for the values of xu, yn are valid for the
values of X’ (@-1), ¥ - -1 (n=1,2,8,4,...). I:c is also easy to realize that
the expressions for x" m—1), v' m-1) are the «inverses of those for xu, yu.

Really if one substitutes a;, by, a,, by in the expressions for xn, yn by by/A,
—bi/A, —as/A, ai/A respectively one finds x'— wm—1), ¥'- m-1 and conversely.

We have thus far determined the coordinates of the points Mgy, My
My, Msy, ... and Moy, M-1y, M sy',.... Consider separately the set of
the «abscissas» of these points. We shall prove that this set constitutes a
group under a certain law of composition.

Since the value of each abscissa depends upon a power of the deter-
minant A it is natural to define as law of composition <o» the one by
which the combination of any two elements (abscissas) produces a new ele-
ment whose denominator will be the ordinary product of the powers of A
of the dominators of the given elements. Then the numerator is formed as
it was seen before by the elements of the determinant of the denominators.

It now becomes clear that the set in question is closed under the
above law of composition, is associative with a neutral element and every
element has an inverse in the set. In addition it is commutative constitu-
ting a cyclic group whose elements are generated by the initial element xo.

Here we shall show only that the combination of two inverse elements
produces the neutral element. From (8a)’’ and (6)"" we have:

@(1,0) ‘
o(p(1,0) 1
0
1

’

Xo0X —1 =

1!/ A° =¢(1,0) /‘ ‘__cp(l.O)

ay by
s by

can be produced from A= if

1
The determinant A°= 'O

a;=1, b;=0, a,=0 and b,=1. But glay, a,), now o(1,0), is the solution of
the equation (A) which now after the necessary substitutions becomes
cpl(x o(x )) 0. The solution of the latter equation has been found to be xo.
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Therefore ¢(1,0)=x0=x,0x —1. The remarks made for the set of abscissas
hold equally well for the «ordinates».

A corollary of the above discussion is that the combination under the
previously defined law of composition of the values of the abscissas (or the
ordinates) of the pairs of points (Moy, Moy’), (Miy, M —1y7), (May, M_sy),... is
constant and equal to the value of the abscissa (or the ordinate) of Moy
For since the abscissa of Moy is the identity element in the set of the ab-
scissas (or the ordinates) it follows that the combination of the latter ab-
scissa with the one of Moy will produce again the abscissa (or ordinate) of
Moy’. Also the denominators of Myy and M-y are A and A~ * Therefore the
combination of the corresponding abscissas will give an element with de-
nominator A™Y i.e. the abscissa of Moy, and so on and so forth.

The examination of maxima or minima of a group of curves has been
made under the general linear form of analytic transformations (1) of the
general coordinate systems (x,y) and (x’, y'). The only known coordinate
systems which are both analytically and geometrically equivalent are the
cartesian orthogonal and oblique ones on the one hand and the polar and
cathetic on the other. The formulae of transformation for the first are

x=x"cosp + y cos(® + ), y=xsing + y sin(w + @),
where w and @ represent the angles between the two oblique axes and the
oblique x " axis with the rectangular x axis respectively. The formula of
transformation from the polar system to the cathetic one is r=gcost. There-
fore it is clear that the above formulae of transformation are a special
case of (1).

Example.— Let the equation of an initial curve be x’—2x + y=0. Let
the formulae of transformation be x’=x, y=x+7y and x=x', y=y’'—x".
Taking the partial derivative of the given equation with respect to x and
putting the result equal to zero we get x=1.

Substituting this value of x in x* —2x 4+ y=0 we get y=1. Therefore
x=1 and y=1 are the values of maximum or minimum, if it exists, of
the given curve. The geometrically equivalent of the given curve is
x"?2—2x" +y' =0. Substituting x" and y’ by x and x + y respectively we fi-
nally take x=1/, and y="1/, as the values of the coordinates of the maxi-
mum or minimum of the latter curve. Continuing the process we find for
the next maxima or minima x=0 and y=0, x=—"1[, and y=1/,, etc.

Now reversing the process we transform analytically x’—2x +y=0 to
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the (x’, y') system taking the equation x*—2x’ + y’=0. The values of the
maximum or minimum of this curve is given by x'=%h, v’ =% The geo-

9

metrically equivalent of x”—3x'+y =0 is x’—3x +y=0. Transforming
again analytically the latter curve to the (x', y’) system we get
x?—4x’ +y =0. The values of the maximum or minimum of the latter
curve are x' =2 and y' =4. Continuing this process we get as the values of
the next maxima or minima x =53, and y =23/, etc. The abscissas there-
fore of the above maxima or minima form the following sequences with

the abscissa 1 of the maximum or minimum of the initial curve:

/‘/2, 0, —2, =1, =3s,...
1\
3/21 2, 5/2. 3, 7/2,...

Applying the Calculus of Finite Differences to the above sequences
. i x=1 x—1
we find that the general terms are respectively 1 — "o and 14 - 9

Therefore we may write those sequences as:
/1._.1/2’ 1—2'1/2, 1—3'1/2, 1—4‘1/2.-"; 1“11'1/2,---

1
\1+’/2, 1424, 188, A4dihy o ondbn-Ys, ...

These sequences constitute a group under the law of composition
(14+m/2)o(1l+n/2)=1+(n+m)/2, where n, m are integers. It is easy to
see that if n=—m, we get the identity element 1. Also all the other pro-
perties of a cyclic group are easily derived.

The values on the other hand of the ordinates of maxima or minima

form the two sequences:

/1/4, 0, 1/4, Jisnons
1\
9/4; 16/47 25/4: 30/4r"'

Applying again the Calculus of Finite Differences to the second
sequence we get as its general term (x* + 4x + 4)[4. Therefore to find the
general term of the first one suffices to change x to its additive inverse, i.e.
—x, Thus the general term of the second sequence is ((—X)2—4x+4)/4.

We can thus write both sequences as:

/1—-1+(—1/2)2, 1=24+(=2/2)%, 1=3+(—=38/2),..., 1—n+(—n/2),...

1\ .
L4 14(1/27, 14+24(2/2)°, 1434+(3/20..., t4+n+(@mf2)?,...
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The law of composition of the above set of the values of the ordina-

tes is [1 +m + (m/2)*] o [1 +n + (n/2)’]= [1 + (m +n) + (m;—n >2} where

m and n are integers. If m=—n then we get the identity element. That
the latter set of ordinates constitutes a group is easily verified.
Remark.—1t has been already proven that the two sets of the nume-
rical values of the coordinates of the maximmm or minimum points of a
set- group of plane curves constitute groups under a certain operatiomn.
Now consider a family of plane curves f(x,y,a)=0 where a is a parameter.
The geometrically equivalent of the latter family of curves is f(x’,y’,a)=0.
Transforming f(x’, y,a)=0 to the (x,y) system through formulae (1) we
get fla;xt by, a,x + by, a)=0 the geometrically equivalent family of which
is fla;x” + byy”’, axx’+ boy ', a)=0. Of course we can continue this process:
Reversing the above process we start from f(x,y,a)=0 and by sub-

. b1 x| ;
stitution from (1) get f( ke /A, 1] L %[ / A > —=0.The geometrically
vy a|/ by yl/
x i by s .
equivalent of the latter curve is f( ‘{, “ ‘A, e /A >=0. Conti-
y a / by y /

nuing in this way we produce a group of families of curves under a certain
law of composition (p. 510).

The envelope of the family f(x,y,a)=0 can be determined if a is eli-
minated between the latter equation and fa(x,y,a)=0. Let ¢(x,y)=0 be
the equation of that envelope. Now to find the envelope of f(ai;x + buy,
ayX + bry, a)=0 suffices to eliminate a between the latter equation and
fala;x + byy, a,x+b,y, a)=0. Evidently the result of such an elimination is
the equation (a,;x + byy, a,x + b,y)=0. It now becomes clear that the en-
velopes of the given group of families of curves constitute another group
under the same operation (law of composition).

ODEPIAHWYISE
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k.

% Ehaylotov onpeiwv Evig ouvélou- 6pddoc Emmédwy xapTUAGY ATOTEAQDY A
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Spadag Omd Gpwopévay vépov cuvdécewe. [lpdg wolito hopPoveran &v dpyd i dpyinh
xopmOAn xal 300 yevirk émineda cuoTApata cuvteTaypévov. Fx T Tehevtalog xap-
whAng wopayeTor O EmavElANLUévng EPAPUOYTE AVAAVTIXGY XXl YEWUETPIXDY HETK-
oynpaTicpdy &v gbvolov xapmuldy, T0 6wolov cuvistd 6psdx. "Ev cuveyeiy mwposdio-
pilovran af cuvteTaypévar Tdv peylotwy % dlayictwy onuelwy TEY rxapmuldy T
Og Gy 6padog xat dmoTobrar 6Tt i apdumTied Tipedl T@AY «TETEMPévwyy %ol
«tetaypévavy Tdv peyistwy 7 ElayicTwy TodTwy onuslnwy droTeloty xuwhiekg dpd-
dag pé dpywa otouxeix (oTouxeix TadtérnToc) dvTioTolywe THV dpWumTuly Tuhy
THe «TeTRNMéEVNG> xal «TETaypévng> ToU peylotou 1) ElayioTou ompetov THg &pyt-
x¥g nopmdAne.

Bv xotoxkeide didetar &v cuyxexpipévoy mapaderypx, 6mou 7 Bondelx Tob
Aoyiopob memepacpévwy Swpopdv Sapaivetar f Bmaplic Tev &v Aoyw Spddwy THY
cuvTeETaYpéveyY TOV peyisTwy 7 hayicTwy onusiov.

Téhos amodeinvieTat, 67t xal 76 alvoloy Tédv wepBadlousdv ke dodelong
6podog, GCUVIGToMEVNS ATO olxoYevelng xapTUAGY, ouVIoTH %al ToUTOo Ouddx 7O TOV
adTOV vopov cuvdécews.

XHMEIA.— La configuration électronique des terres rares, par Paul
Sakellaridis*. "Avexowwddn Vo 1ot % "Epp. *Epnoavouvil.

Les terres rares appartiennent aux éléments dits de transition; ils
contiennent en méme temps des couches f et d incomplétes, ces couches
sont les couches 4f et sd.

L’étude des spectres d’absorption et d’émission optiques et de rayons X
des éléments permet en principe de distinguer leurs différentes orbitales
électroniques et de calculer le nombre d’électrons qui se trouvent sur cha-
cune d’elles.

Dans le cas des terres rares, a cause de la complexité de leurs spectres
optiques et de leurs spectres de rayons X, quelques - uns seulement de ces
spectres ont été partiellement étudiés, tandis que la plupart restent a étu-
dier ou a classifier. Par conséquent, les configurations électroniques propo-
sées par différents auteurs pour l'ensemble de ces éléments, I'ont été en
grande partie par extrapolation. Nous signalons ici (tableau N° 1) la confi-
guration électronique proposée par W. F. Meggers' d’aprés les données ex-
périmentales actuelles, qui proviennent surtout des spectres optiques pour
des éléments voisins et pour quelques-unes des terres rares elles-mémes.

* DAYAOY ZAKEANAPIAH, ‘HAentpoving Sopn 1dv craviav yxigv,



