W22 TIPAKTIKA TIIS AKAAHMIAS AGHNON

) \ £ ’ ) \ A ’ 3 o~ \ A . ’ -~ ~
tou €lg ta Gvaoteoa Wavixa xal xaddlov elnsiv S v edyéverav T Puyig Tov.
A totto nal f) v tov 9o maoapeivy Eml paxoov v ot CAxadnuie Eviipog

2wl mwooolg.

ANAKOINQIEIZ MH MEAQN

ANAAYTIKH TEQMETPIA.— The principle of geometrical equivalence
and some of its consequences to the theory of curves, 4y

C. B. Glavas*. "Avexowv@y9n Omo 100 «%. “Lodvyv. Eavddum.

The problem under study.

Let the analytic relations f(a;, b)=0, f(a,, b))=0,..., falan, ba)=0
be given and suppose that they represent one and the same plane curve C
in the distinct coordinate systems (a,, b,), (as, by), ..., (an, bn) respectively.
If the formulae of transformation among these coordinate systems are
known then it is possible to go analytically from one of the above relations
to the other. Thus these relations may be termed as «analytically conver-
tible or equivalent».

As an example, the equations of a circle with center at the origin
and radius a are x’+y’=a’, x4+ y”’+2x'y'cosw=a’ and r=a in the rect-
angular, the oblique and the polar coordinate systems respectively. All these
three equations represent the same circle and one can go from one of the
three equations to the other by applying the well - known formulae of trans-
formation among the three coordinate systems.

The corresponding dual problem to the previous one, which has ne-
ver been examined, mav be stated as follows: Let the analytic relation
f(a, b)=0 be given. If the variables a and b are substituted by a, and b,,
a, and b,, ..., an and b, respectively in the given relation then we get the
relations f(a,, b,)=0, f(a,, b,)=0,..., f(an, ba)=0. Let (a,,b,), (as, bs),...,
(an, bn) be distinct plane coordinate systems. Then the above n equations
represent curves K,, K,,..., Kn which in reality are represented by the
same basic analytic relation f(a,b)=0. Now the problem is the possibility
to go geometrically from one curve to the other. This means that given

any point of one of the above curves one can find its corresponding one
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on any other curve by the use of euclidean geometrical constructions as it
shown in the next section. Curves for which such a possibility exists may
be characterized as «geometrically equivalent or convertible» and the re-
rulting principle of geometrical equivalence leads to some theorems on the
total set of plane curves.

Geometrically equivalenl curves.

Let the polar and the cathetic coordinate systems be given. In the
cathetic system® the coordinates of a point P (fig. 1) are OA=g and the
polar angle 6. The equation f(a,b)=0
represents two different curves f(r,8)=0
and f(g,8)=0 in the two coordinate
systems in use. In order that these P
curves are geometrically convertible T
or equivalent it is necessary that to

each point Q of the plane with coor- =

dinates (r=00,0) there corresponds
another point P with coordinates
(g=0A, 0) such that 0O =0A, 6 being
the same to both systems. This is pos-

sible here because if P is given one

can construct the semicircle OPA pas- Fig. 1.

sing through the origin and with

center on the axis. Now if another circle is constructed with center at the
origin and radius OA the point Q can be found at the intersection of the
latter circle with the extension of OP. Evidently the polar OQ is equal to
the cathetic OA. Conversely one can go geometrically from the point Q
to the point P. Therefore the polar curve f(r, 8)=0 described by Q and the
cathetic curve f(g,0)=0 by P, both represented by the same analytic rela-
tion, represent two distinct curves which are geometrically convertible. As a
general conclusion, while the analytical equivalence rests upon the possibi-
lity of finding formulae of transformation among the coordinate systems in
use, the geometrical equivalence depends upon the possibility of finding

1 C. B. Gravas, <«Plane coordinate systems in mathematics study», Doctoral
Dissertation, New York, Teachers College, Columbia University, 1956, Ch. III.
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a geometrical way to go from one coordinate system to the other so that
the corresponding coordinates are equal by pairs.

If the point L(g=0B, ) is defined by the cathetic system, the point
P(r=OP, 6) by the polar one, and the point Q(x=0B,8) by the system
(x,0) (fig. 1) then these three systems are geometrically equivalent because
OB= OP. Hence the curves described by each of the above three points
are geometrically equivalent curves. Diagram I shows triples (A,, B, C,),
(A, B, Cy), ..., of geometrically equivalent curves. The following theorem
is true in relation to these curves.

DIAGRAM 1.
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f; (a, b)=0 ‘fl (g,0)—A;=0 <—1—> f, (r,8) =B,=0 <—i—> fi (x,8) = C;=0
f-z (a, b):o ‘f-g (g,e)E A‘l =0 <—“_) f-_) (I’,e) Bz =0 4—"—} fg (X,G)EC'}:O

Theorem : Suppose that column L (g, 0) contains the total set of plane
curves and that no curve is repeated, then the other columuns contain the
same set of plane curves.

Proof: 1t is assumed here that two curves are different if their equat-
ions differ even if the curves belong to the same family. Evidently column
P (r,0) of the polar system contains plane curves. For example the curve
B, geometrically equivalent to A, is different from A,. For the equation of
B, is f, (r,0)=0, while that of A, is f,(g, 8)=0. If the formula of transfor-
mation r=g cos @ is applied to the latter equation it becomes clear that
the two curves A, and B, are different.

Now since column L (g, 8) contains by hypothesis the total set of plane
curves and since B, is a plane curve then B, must be the same with a curve
say Ax(k# 1) of the first column L. The equation fx (g,08)=-0 of Ax can be
found if in the equation of B, one makes the substitution r=g cos@. It is
impossible that B, is the same with another curve A;(/#1) of column L.
For A; should then be identical to Ax, which is contrary to the hypothesis
of the theorem. Similarly it is shown that one and only one curve of the
second column corresponds to each curve of the first one. Hence there

exists a one - to-one correspondence between the two columns and conse-



SYNEAPIA THX 28 ®EBPOYAPIOY 1957 125

quently column P (r,8) contains the total set of plane curves. Similar con-
clusion holds for column O (x, ©).

A corollary of this theorem is that if one may be able to write the
total set of plane curves by the use of one coordinate system then one can
construct the same curves expressed in another coordinate system geome-

trically equivalent to the first one.

Implications of geometrical equivalence.

1. The usual method for the simplification of the equation of a curve
and study of its properties is to transform its equation by the use of another
coordinate system. Now if the equation is f(g,8)=0, one can write this as
f(r,0)=0 if the systems (g, 6) and (r,6) are geometically equivalent as the
case is here. For example the equation g=a@ can be written as r=a@. These
curves are geometrically equivalent. But the latter is known (spiral) and one
can construct the first one thanks to the principle of geometrical equivalence.

2. Given the geometrically equivalent curves K,, K,,..., Ky then it
is known that one can go geometrically from one to the other. But all these
curves correspond to a common analytical relation f(a,b)=0, where a and
b refer each time to one of the coordinate systems (a,, by), (as, bs),..., (an,
ba). Suppose that the tangent line to a point of one of the given curves,
say f(ai, bi)=0, has been found and that its equation is ¢(ai, bi)=0. For
another curve f(am,bm)=0, whose equation is analytically the same to the
previous f(ai, bi)=0, the tangent line is evidently ¢(am, bm). Note that the
two tangent lines as well as their initial curves have common equations
but they represent different lines which correspond to the systems (ai, bi)
and (am, bm). Therefore if one finds the equation of the tangent line to a
point of one of K,, K,,... Ky then one can immediately write the equation
of the tangent to any other curve. Moreover if such a tangent to one curve
is constructed then one can construct the tangent to any other curve.

3 Let the equations f(g,8,a)=0 and f(r,8,a)=0, where a is a para-
meter, of two geometrically equivalent families of curves be given. To find
the envelope of the first family is enough to eliminate a between f(g,8,a)=0
and fa (g,0,a)=0. Let ¢(g,0)=0 be the equation of that envelope. It is
clear that the equation of the envelope of the second family is @(r,8)=0.
To avoid repetition one can state analogous conclusions to those of the
previous paragraph.
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4. Geometrically equivalent curves represented by the same equation
have maxima and minima corresponding to common values of the variables.
5. From the above discussion one may conclude that geometrically
equivalent curves have those properties in common which are the by-pro-

duct of the same analytical operations on their common equation.

Partition theorem of plane curves.

The geometrical equivalence between two plane coordinate systems
is a binary relation of special character. It has been defined at the begin-
ning that P(g,0)-~0Q(r,0)if g=r and given P one can go to Q (fig.1)
by means of geometrical constructions. Now this definition leads to an
equivalence relation. Really, P~ P, because obviously one can go from P to
the same point P. Therefore the reflexive property exists.

Also if P~ Q, then Q~ P, for if g=r and one can go from P to Q then
r=g and one can go from Q to P. This establishes the symmetric property.
And finally if L(g,8)~P(r,0) and P(r,8) - Q (x,0) then it is easily seen that
g=x and one can go from L to Q. And this shows that transitivity holds.

Now geometrical equivalence between the plane curves f(r,0)=0
and f(g,8)=0 has been defined in terms of geometrical equivalence of the
points P(r,0) and O(g, 8) describing the two curves respectively. Since the
latter equivalence constitutes an equivalence relation then this forces a par-
tition of the total set of plane curves into mutually exclusive subsets of
equivalent curves according to a well-known theorem of the equivalence
relation’. With this in mind one can prove the following significant theorem.

Theorem . The total set of plane curves may theoretically be partitio-
ned into subsets of equivalent curves. Each such subset constitutes a group
which is isomorphic to the additive integers.

Proof: For the proof of this theorem the two equivalent systems (g, 6)
and (r,0) are used. The curve g=a is taken as initial curve. This curve
represents a circle passing through the origin with center on the axis. But
one can start from any other curve.

That the set of plane curves can be partitioned into subsets of equi-
valent curves is known in advance because the systems in use are equiva-
lent and the relation between P(g,6) and Q(r,8) (fig. 1) is an equivalence
relation. It remains to show the way of effectuating that partition. Starting

! E. R. LorcH, Theory of Functions, New York, Columbia University, 1951, p. 1.
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from the curve g =a (Diagram II) its geometrically equivalent one is found
if g is substituted by r and it is r=a. The latter is identical to g cosf=a
due to the transformation r=gcos®. Now the equivalent curve to the
curve gcos@=a is rcos®=a which is identical to the curve g cos’6=a
and so on and so forth.

DIAGRAM II. DIAGRAM III.
g—a <=———=> fi—q T=—a &> g
gcosd=a <———> rcesf=a r—aeesd ~——> g—acosh
gcos’@=a <————> rcos’f=a r=acos’@ <———> g=acos’9

If the curve r=a is taken as initial curve then diagram III can simi-
larly be produced.

Now since the pair of initial curves g=a and r=a is a pair of geo-
metrically equivalent curves it is clear that diagrams II and III lead to
diagram IV where for reasons of simplicity the equations are expressed in
the (g, 0) system. All curves of the latter diagram are equivalent curves.
And if any other curve is taken as initial curve exception made of the cur-

ves of diagram IV one can form similar sub-
DIAGRAM 1V.

sets of equivalent curves. o
1t is shown now that such a subset (dia-
5 gcosg=a | g=acoso
graEm 1V) cc.mstltutes a group under an ope- I P
ration o defined as follows: geos'9=a | g=acos’d
(1) (gcos*@=a) o (gcos’d=a)==(gcos*+0=a) - =

Here k and / are supposed to be integers.
In order that the subset in question constitutes a group it must:

1. The combination under the defined operation of any two elements
of the subset produces an element of the same subset. This is true here be-
cause in (1) k + 7 is an integer too.

2. The defined operation be associative. Really:
(gcosk@=a)o [ (gcos’®@=a) o (gcos™6 =a) ] =
=[ gcos¥0=a) o (gcos’9=a) ] o (gcos™p=a)

This relation is true since k+ (/+ m)=(k+ /) +m holds for the integers.
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3. Exist an identity element. Such an element is the initial curve
(g=a)=(gcos’9=a):
(gcos*@=a) o (g =a)=(gcos*@=a).
And 4. Exist an inverse element to every given element of the subset.

Really:
(gcos*0=a) o (gcos™@=a)=(g =a),

as it is clear from the formation of diagram IV.
Finally if one defines the one- to-one correspondence
(gcosk@=a) —> &k,

then:
(gcos*@=a) o (gcos’®=a) —> k + /.

This means that the group in question is isomorphic to the additive
integers.
Geometrical interpretation of partition theorem.

The theorem of partition should find its interpretation on the eucli-
dean plane. First the curve g=a is constructed (fig. 2), which is the circle

v

O0x 0, A. Take the point 0, of this circle. The geometrically equivalent
curve of the latter is r=a or gcos@=a. To find the corresponding point
to 0, on the latter curve is enough to draw a perpendicular line on 00,
at 0,, passing through A, and construct a circle with center at O and ra-
dius OA. This circle meets the extension of 00, at 1, which corresponds to
0,. Continuing the same process «perpendicular - circle> one can find the
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point 2, on gcos’®=a, corresponding to 1,, and so on and so forth. In this
process one moves from the system (g, 0) to the (r,0) one.

If one follows the inverse process, i.e. from 1, to 0,, then 1, lies on
r=a whose geometrically equivalent curve is g=a. Therefore to go from
1, to 0, requires to follow the process «circle - perpendicular». But g=a is
the same with r=acos® whose geometrically equivalent curve is g=acosé.
The corresponding point of the latter curve to the point 0, can be found
by drawing a circle and then a perpendicular line. The corresponding point
is denoted by —1, and so on and so forth.

If another point Ok is taken on g=a then it is possible by following
the above method to find the corresponding points of the equivalent cur-
ves of the subset in question. ‘

From the above discussion it becomes clear that on the right side of
the initial curve g=a lie the points of the curves of the first column of
diagram IV while on the left side those of the right column.

To complete the geometrical interpretation of the partition theorem
the geometrical nmieaning of the symbol o must be defined in the relation
(gcosk@=a) o (gcos’@=a)=(gcos*t’9=a)=(gcos’t @ =a).

By definition the above combination means that if the curve (gcos*g=a)
is considered as «operating factor» then one should start from the points
L, bh,...of the second curve (gcos’®@=a). From these points one can find
the corresponding omes of the curve (gcos’t¥8=a) through k successive
constructions to the right (of the type perpendicular - circle) or to the left
(of the type circle-perpendicular) according as k is a positive or negative
integer respectively. The same definition holds, leading exactly to the same
result, if the curve (gcos’@=a) is considered as the operating factor.

After the above definition it is easy to interpret geometrically the
subsets - groups in question. The combination particularly of two inverse
curves (gcos¥@=a) and (gcos ¥@=a), which produces the identity element
(g =a), is characteristically remarkable. Thus, if for example k >0, and if the
curve (gcos¥9=a) is taken as operating factor then from the points —k;,
—ky,.. of the inverse curve (gcos™@==a) one should make k successive
constructions to the right (of the type perpendicular-circle) when one finds
the points 0y, 0y, Os, ... of the initial curve which is the identity element.

coNCLUSION. The study of geometry be means only of analytical

transformations of the equations of curves had been one sided. After the
9
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establishment of the dual principle of geometrical equivalence the above
study becomes complete. Space did not allow to present some applications
and especially to make a combination of both analytical and geometrical
transformations in a new method for curve tracing and for the solution of

differential equations.
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