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ANQTEPA MAOHMATIKA.— On the singularities of a system of diffe-
rential equations, where the time figures explicitly, iy Dem.

G. Magiros*. "Avexowddm vmo tod % Bao. Alywirov.

1. In my first paper of this volume is referred, without any explana-
tion, that the singular points of the system:

d d
‘d—utl‘=EFl(u1|u21 t)) _d% =EF2(U1,U2,t), (1)

fulfill the equations:
Ao(llx, u2)=0 ’ Co(lll, 112):0 3 (2)

where Ao and Co are the first terms of the Fourier series expansions of
the functions F,; and F, respectively.

In the following we discuss the above subject. We restrict ourselves to
the system (1), although the theory can be applied to more general systems.

A constant solution {ui, us), of the system (1), determines a point in
the u,, u, - plane independent of the time t, and this point is, by definition,
a singular pornt of the system (1).

In the following we try to find how to determine approximately the
singular points of the system (1).

2. Suppose we are given that the functions Fy; and F, fulfill the ex-
pansibility conditions into Fourier series in t!! according to which we have:

d . i

'duTl =€e{Ao+ Ajcost + Bysint+... + Am cosmt + Bm sinmt +...}

du (3)
dT’ = ¢{Co+ Cycost + Dysint+... + Cm cosmt + Dm sinmt + ...}

where the coefficients A, B, C, D are functions of uy, and u,.

By the above we mean that F, and F, fulfill the conditions of the
Fourier’s theorem™ then :

a) Fy, F, are periodic in t of period, say, 2,

b) Fy, F, are integrable, say Riemann - integrable, in [to, to + 2a],

¢) Fy, F, have limited total fluctuations in [to, to 4+ 2x], and

d) the coefficients in (3) can be found according to the standard manner.

# AHM. MATEIPQY, ’Exni tdv &vapgiav onpeiov Sixgopined custinateg, Smov & xeévog eicép-
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Let us take the system:

du du
dt‘ —¢ Ao(uy, 1s) , dtz = e Co(uy, us), (4)

where the time t does not figure explicitly.

Each of the above systems accepts a unique solution {u,, u,}, which
assumes given values: {ujo, us,} at t=to, provided that the functions in
their right- hand sides fulfill a Lipschitz condition, when their arguments
are restricted to be in the domain:

D U1—u‘ol_ék1, ‘le—'llgolékz, lt‘—to|<T

Apply Picard’s method of succesive approximations for calculation of
the solution {{,, @i} of the system (4), by taking as zeroth approximation
arbitrary conditions {@i,, fizo}. The successive approximations, which con-
verge to the solution {i,, @} of (4), are:

(1) (1) t
u, =+ Eon ulo, \120) dt iy =1g0 + EfCo(ﬁ,o, ﬁ20) dt,
g, =

............................... (5)

(n) i3 (n-1) (n-1) (n) t (n-1) (n-1)
Uy =Tt e/ Ao(u,, fiy) dt, Hy=tigo+¢&fCold,, iip) dt
to

Apply also the ‘above method for calculation of the solution {u,, us}
of (8) by taking as zeroth approximarion arbitrary initial conditions {u,o,

Uzo} at t=to. The successive approximations are:

(1)
U, =u0+ szo g0, Ugo) At + sz Us0, Uso) costdt + s/B {0, W) Sib dit - . .,

(1)
o =1tg0 T+ stho(ulo, Ugo)dt + f[C‘(““’ Ugo) costdt + sth,(u,o, Ugo) sintdt + ...

....................................... (6)
(n) t (n-1) (n-1) t (n-1) (n-1) $ (n-1) (n-1)
Hp==tlis, szo (uy, ug)dt +sz (u,, ug)costdt + efB U, ug)sintdt+...
(n) t (n.1) (n-1) t (n-1) (n-1) t (“ 1) (n-1)
Uy =Ug0 +sto(u,, up)dt + efC1 (uy, uy)costdt+ st u,, ug)sintdt 4. ..
which couverge to the unique solution {u,, u,} of the system (3).
Let us take the same initial conditions:
Uyo =140, Ugo=Tz0, (7)
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in the approximations (5) and (6), and subtract properly: the result for the

n'" approximation is:

{n) {n) t (n-1) (n-1) (n-1) (n-1) t (n-1) (n=1)
w,—1,= e/ {Ao(u,, m)— A, (@i, )} dt + e/ A,(u,, u,)costdt+
to to
T
+ ¢/B,(u,, us)sintdt +. ..
to

(n) (n) t (n-1) (n-1) (n-1) (n-1) t  (n-1) (n-1)
uy— s = & [ {Colu,, 1) —Co(ity, @2)}dt+ efCi(u,, up)costdt +
o to
' t  (no1) (),
+¢/ D, (u,, w)sintdt + ...
to

The integrals in (8) are bounded and the right-hand sides contain ¢
as a common factor, then the approximations, and consequently their limits,
are for small € of order ¢, that is:

[u,—d,|=0(), [uz—1:]=00(). (9)

In (9) the {u,, u,} and {@, , @,} are solutions of (3) and (4) respectively,

then any solution of (4) can be considered as an approximation of the so-
lution of (3) of the first order in s.

3. The constant solutions of (3) come when, in (1), ¢F, and ¢F, tend
to zero then, since, the time t figures explicitly in F, and F,, when &£ —>0.
But in (4) the time t does not figure explicitly, then we can get constant
solutions of (4), if ¢ is not necessarily zero, by taking proper initial condi-
tions in the approximations (5), namely the initial conditions {i,., fso}
which fulfill the conditions:

B (e, Bgo)==0 , Co (iis0, Tigo )=0, (10)

when the integrals in (5) are zero, and the solution {,, fis} of (4) is the
constant {ii,,, 1o} for any & included & = 0.

A constant solution {1i,, fi,} of the approximate system (4), which ful-
fills (10), in considered as an approximate solution of the exact system (3)
of first order in e.

4. The above technique of replacing the system (3) where the time t
figures explicity, by the approximate system (4), where the time t does not
figure explicitly, consists essentially of substituting a function by its «mean

value> over an interval®| which is called «<moving average» or «shding
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mean»>. Since the «moving average» is, in general, smother than the ori-
ginal function, the above technique, which is known as the «awveraging
principle» ¥, offers advantages in the study of the original system, and it
is realized in practice with good results, say in economics, or in electrical
problems, e g. in the photoelectric reproduction of ‘sound, in television

images, etc.’.
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IIEPIAHYI1IZX

‘H 2pyacia abtn dvapépetar énl TG avopdhwy onpeiwy Tob cusTHRXTOS (1),
v 6molwy 1 owoudy yiveton Sk THg owouddis TGV dvwpdlwy onusiny TOD CUGTHLX-
wog (4), T& émotx whnpobv Tag ouvdixac (2). Awk i yphoews Tig dvoTépn pedié-
Sou,  6wolx elvar YvwoT Gg «doyn Tob uéoov Bov>, TapaxdpwTOVTAL MEYEAKL A~
Fnuatinad Suorohlay, ai 3¢ hapPavdpevar xate wpostyyisty Misewg elvar elg THy wpd-
Ew AMav ixavomomTikal.
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