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ABSTRACT

According to classical mechanics a particle momentarily situated at a potential
minimum with zero momentum will remain motionless for ever. The nearest state in
quantum mechanics approaching the above initial conditions is given by a wavefunction
providing zero current density, probability of finding the particle symmetrically locating
the particle about the position of the potential minimum and a least possible energy. In
contrast to classical mechanics the evolution of motion as time proceeds leads to spatial
and temporal charge and current density fluctuations. In the present study such fluctua-
tions are obtained for an electron in a double potential well with an initial state of the
sort that corresponds to a classical state from which no motion follows. The fluctuations
in question provide a rough estimate for noise to be expected in quantum semiconductor
devices in the submicron region.

1. Introduction

According to classical mechanics a particle that is momentarily situated at a
potential minimum with zero momentum will remain motionless for ever. It is
of interest to examine the quantum mechanical counterpart of the above state
of affairs in the case of a double quantum well. As is well known double
quantum wells can nowadays be realized in epitaxially grown semiconductors
and form the simplest form of superlattices. Superlattices are destined to play
an important role in the minuturization of semiconductor devices, where
quantum effects will constitute the dominant driving mechanism. Contrary to
classical mechanics, where a state of complete rest exists the quantum regime
imposes continual movement, a situation that superposes an intrinsic noise.
With the above in mind we subsequently proceed to present calculations
pertaining to current and charge density fluctuations starting from a quantal
state intimately related to the classical initial state leading to continuation of
tranquility.

The quartic potential problem has been treated by a number of authors,
but mostly within time independent frameworks [1]. There have been treated
aspects like the spectrum and tunnelling [2]. As far as we are aware the case of
low energy fluctuations has not been dealt with. In what follows we proceed in
a time dependent fashion which enables treatment of both temporal and
spatial fluctuations.
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2. Evolution of the wavefunction

We begin by considering the one dimensional double well expressed by
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which represents, as shown in Fig.1, joined wells with minima located at x=0
and x=2a. These wells in the vicinity of their bottoms can be approximated by
oscillator potentials associated with natural frequency w. This situation allows
use of the lowest energy eigenfunction as an initial state in the present
investigation for such a wavefunction leads to zero current density on one
hand and on the other provides a probability density locating the particle at
the bottom of the well. We choose for our evaluations the 1.h.s. well, and we
have
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With (2.2) as initial state the required wavefunction W(x,t) is governed by
the Schrodinger equation

in wixt) = L U ¥, (@3)
a 2m gx? !

To facilitate both the ensuing symbolic and numerical evaluations we
switch at this stage to dimensionless quantities. The pertaining units of time,

length and energy are respectively m'l, £=(h/mu))1f2 and Aw. We now
introduce the corresponding dimensionless quantities for time and lengths as

=0t , A=a/f , y=x/t

Denoting the intitial and evolving wavefunctions in terms of the
dimensionless time and the spatial coordinate y by Y (y) and Y(y,t) we

express the wavefucntion as
Y0 =Y, Py,1), Y@ exp - y2) (2.4)

Introducing (2.4) into (2.3) with the appropriate changes in variables

(t—1, x—>y ) We obtain the equation of motion for P as
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where
B (2.5a)
2A gA?

For obtaining the required wavefunction (2,4), (2.5) must be solved under
the initial condition P(y,0)=1. It is now clear that the solution for P takes the
form of a power series in y with time dependent coefficients. Furthermore we
can carry out an iterative solution of (2.5) analytically.
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Figure 1.Symmetric double well. Minima at 0 and 8£.
Horizontal axis in units £. Vertical axis in
units hw.

The iteration starts with P;=1 on the r.h.s. of (2.5) and produces P,(y,1)

under the initial condition P,=(y,0)=0. The procedure is repeated in the usual
manner using P; on the r.h.s. and obtaining the next iterant P;,;. 1In this way

the required SOhlthﬂ can be approximately obtained as
P(y,0)=1+P,(y,T)+P,(Y,0)+.... 2.6)

As we go higher in the hierarchy the further we extend the length of time over
which the solution is valid.
For obtaining the various terms P(y,T) we have devised a program in the

Mathematica System utilizing symbolic computation. These terms are
polynomials in y with coefficients expressed as terminating Fourier series. The
first couple of terms P, are of limited length, but the size and complexity
increase considerably for larger j and we see no point in writing down explicit
expressions. In the computations which follow in the next Section we have
used the first 5 terms in (2.6) and tested the validity of the approximation by
considering the deviation of the approximate probability of finding the
particle everywhere from unity.
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3. Charge and current densities

Having at hand an expression for the evolving wavefunction we can, utilizing
standard procedures, write down the formulae for the charge and current

densitiew which in the present case take the form

p(y,T) =(% ]P(y_r)(zn-x/z exp(-y?) 3.1)

iy, n) = (cw)Re[—iP *(%— y)}n"’zexp(—yz) 3.2)
(e/¢) is the unit for charge density and (ew) the unit for current density.

The above formulae enable us to provide a few diagrammes giving the
evolution of the charge and current densities at certain locations as they vary
with time as well as frames of the corresponding spatial distributions at
different times, as depicted in Fig 2,3,4,5 and 6.
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Figure 2. (a) Variation of the charge density (continuous line) with time at position x=-£ for a=4¢ (A=4)
about the corresponding initial value (dashed line). Horizontal axis in units of time 1/w and
vertical axis in units ¢/¢.

(b) Evolution of the current density at position x=-£ for A=4. The current density rises
signifiantly from its initial valuc zcro and fluctuates. Horizontal axis in units 1/w and vertical

axis in units ew.
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Figure 3. Same as in Fig. 2, but for location x=0
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Figure 4. Same as in Fig. 2, but for location X=¢£.
1
0.8
0.6 (a) (b)
0/4
L2
=TS =5 -2.5 (] 225 5 .5 -7.5 =9 -2.5 255 5 oS

Figure 5.(a) Spatial distribution of the current density at time t=1m‘l for A=4 ( continuous line) and
corresponding initial distribution (dashed liae). The deviation from the initial distribution

is very small. Horizontal axis in units £ and vertical axis in units ¢/£.

(b) Spatial distribution of the current density at time t=1w™) for A=4. In contrast with the
charge density the deviation from the initial distribution (everwhere zero) is now
sipnificant. Horizontal axis in units £ and vertical axis in units cw.
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Figure 6.‘Sa.mo.:'as m F_ig. 5, but for time t=2u)‘1. The deviation of the charge density (a) from
its initial distribution is now more pronounced. It is furthermore significant to notice that
the current density (b) exhibits regions of opposite movements for the same electron.

The above fluctuations, particularly these of the current density, make
manifest the existence of noise and give an idea of the what can expect in
quantum semiconductor devices (submicron region) emanating from the
dynamics exploited for their operation.
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Arlaxvpdvoelg ToxvéTnTag @optiov xal pedpartog ot SimwAh xBavtiny xotAdda.

Toupowve g TV xAxGeLRy unyavixi, cwpatidio mov Bploxstar oTiyulaio pd
undevind) Spun ot éAdytoto duvauxod & mapapsiver dxivnro yie mwavra. ‘H &yyd-
TEPN XKATAGTAGY GTHV KPavTind) pyaviny meds Tig mid mave dpyixds ouvbiixeg di-
VETOL IO (L& XURATIXY GUVEETYGY TOL Topéyel Undeviny) TuXVOTYTH PEDUATOS, T~
Bavétyra ebpéaews 10D cupanidiov Emixevrpmuévn ovupertoa epl ) Oéon Eadyt-
ooy Suvapixel xal xata 6 Suvatd EhdyioTy Evépyeta. & dvrifeon ut v xhaooixy)
wipavixd) 7 €4y THe mvioemg pé Ty Thpodo Tol ypbvou 6dnyel of ywpikis %ol
xpovixgs Staxvpdvosts TéY TuxvoTHTLY TMbavbtnTag xal pedpatog. Lty mpoxelwevy)
ueréry dmodoyilovrar Téroleg Staxvpdveelg yx Eva GAextTpévio o6& SimAY xouhddx
Suvapixod Srav N deyixy xPaviiky) xatdcTacy, Tpocwdklel TPOG THY AviicToLyy)
wAagoh xat Ty 6motav 7 Rpeuia Enaxohovdel. Of év Abyw Sraxvpdvosig Tapéyouy
ula adpoueph Exttunon 7ol OopdPov mod pmopel v dvapévetar 6 Huraywyixés

SrardEerc xBavrindic Aertovpylas oy xdTe Tob ixpol mepLoy.



