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ABSTRACT

Materials and structures weak tn shear strength are known to be able to exhi-
bit negative Poisson’s ratio. This fact has been shown to be valid for certain me-
chanisms, composites with voids and frameworks and has recently been verified
for micro-structures optimally designed by the homogenization approach. For
micro-structures composed of beams it has been postulated that non-convex shapes
(with re-entrant corners) are responsible for this effect. In this paper it is nume-
rically shown that mainly the shape, but also the ratio of shear to bending rigi-
dity of the beams do influence the apparent (phenomenological ) Poisson’s ratio.
The same is valid for continua with voids, or for composites with irregular shapes
of inclusions, even if the constituents are quite usual materials, provided that
their porosity ts strongly manifested. Elements of the numerical homogenization
theory and first attempts towards an optimal design theory are presented in this
paper and applied for a numerical investigation of such types of materials.

1. INTRODUCTION

Modern structures and machine components working under extreme con-
ditions are required to have optimal performance. Advances in computational
modelling and mechanics and in the manufacturing technology nowadays
render feasible an optimisation of such materials and structural designs. On
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the other hand, nature assesses that monolithic structural systems, made of
isotropic and homogeneous materials, are far away from such an optimal
design: one needs only see the form and the inner structure of a bone to realize
how an optimal material design problem that has emerged out from centuries
of evolution, looks like. Composite structures and materials made of micro-
structures allow to apply to some extent, optimal design concepts to tailor
a structural system, such as to fit with certain requirements. Structures with
even negative Poisson’s ratios, which at first glance would appear to be exotic,
are also feasible. It is the purpose of this paper to exploit the effect of a con-
trollable, possibly negative, Poisson’s ratio for structures and microstru~
ctures, and to study this effect numerically either for composite materials,
or for materials with reentrant corner microstructures, by means of a
numerical homogenization method and finite-element techniques.

Composite materials, like human bones present a certain, clearly not
homogeneous and isotropic microstructure. Even if at the structure’s level
continuum mechanics’ techniques are used for structural modelling purposes,
it is the microstructure of the material, the appropriate property which allows
us to control according to our wishes its overall mechanical properties. By
applying modern techniques of optimal topology design by homogenization
[1-3] the detailed material design (i.e. the choice of the appropriate micro-
structure, the constituents etc)is treated for a characteristic cell of the struc-
ture. In turn, classical modelling techiques at the structure’s level with appro-
priate elasticity laws are used, as they result from the overall behaviour of
the characteristic cell. The origin of this micro-macro approach can be traced
back to the elastic framework modelling of continuous structures [4-9].
In general one gets orthotropic elastic moduli which are related to the bending
stiffness of the members, composing the cell walls, or, in a more general context,
with the topology of the microstructure (cell). Moreover, elastic collapse is
associated with elastic buckling of these members, plastic collapse is modelled
by plastic hinges formed inside these members and failure response including
the transition from a compression-strong to a tension-strong behaviour with
increased porosity, may also be explained by these models [10].

The effect of negative Poisson’s ratio has also been explained by elastic
framework of mechanism models [5-7] and [11-15]. One should recall here
that anisotropy and variable Poisson’s ratio may have a beneficial effect,
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among others, on the strength characteristics, on the stress concentration
factors and on the failure response of the structures composed of these mater-
ials [10, 17-21]. In particular, the advantages of using materials with negative
Poisson’s ratio have already been reviewed and appreciated [12, 22]. They
permit, among others, the reduction of stress concentration factors and the
production of layered composite panels and beams, which allow for a smooth
treatment by cold metal forming techniques.

Concerning the technological feasibility of manufacturing materials with
«strange» microstructures, so that to exhibit negative Poisson’s ratios, one
should note that there exist already materials with this kind of microstruc-
ture, which have the aforementioned property. Let us recall here some ani-
sotropic crystallic materials like the hexagonal cadmium [23] and the cubic
pyrite [24]. Furthermore, the pyrolytic graphite, with a lattice structure, pre-
sents a value of Poisson’s ratio equal to v=0.21[25], the spongy parts of bones,
with a lattice-like structure, reported in [12] and the granular materials [26].
Moreover, thermomechanical techniques have been developed, which trans-
form conventional low density open-cell thermoplastic polymer foams to form
materials with negative Poisson’s ratio, up to a value of v=-0.4 for some loa-
ding directions[22]. More sophisticated techniques are also mentioned, without
re-entrant corners and nonconvex shaped, two-dimensional cellular (micro)
concrete examples for voided ceramics or even metals. In this paper the
evidence of, and the ability to design for negative Poisson’s ratio will be
shown, by means of finite-element based unmerical examples, for porous
materials with re-entrant corners and nonconvex shaped, two-dimensional
cellular (micro) structures, as well as for composite materials with analogous,

re-entrant corner inclusions.
Design concepts and inverse design (tailoring) aspects will be discussed

and demostrated by numerical examples. Analogous effects alsoappear in two-
dimensional cells of matrix-fiber reinforced composite materials, as it will
be shown by means of typical numerical examples.

A concise survey of existing published results on structures, materials
and mechanisms with variable and in particular negative Poisson’s ratios
and practical results of this effect are given is section 2. Continuous and dis-
crete modelling aspects are discussed in sections three and four respectively.
Elements of numerical homogenization theory, as they are used in the numer-
ical investigation in this paper, are presented in section five. The inverse
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homogenization (optimal design) problem is briefly discussed in section six.
Numerical examples and discussion are presented in the last section.

2. BODIES WITH VARIABLE AND NEGATIVE POISSON’S RATIOS

The admissible limits of variation for Poisson’s ratio for homogeneous
and isotropic materials lie in the interval [-1, 4 1/2]. The right-side limit
corresponds to incompressible materials, like the rubbers, while negative values
correspond to dilatational materials in general, with weak bulk modulus and
strong shear modulus. For anisotropic materials and in particular for ortho-
tropic ones a condition has been given by the first author [20], which guaran-
tees that they behave like isotropic materials with positive values of Pois-
son’s ratio. In all other cases the possibility of the appearance of a negative
Poisson’s ratio, at least in one orientation of the anisotropic body is not
excluded a priori from the theory of general anisotropic elasticity.

Several single crystals of a polygonal structure at the atomic level are
reported to have negative Poisson’s ratio along some directions of loading
(see for example tests with cadmium crystals [23], the single-crystal pyrite
[24] and the lattice structured pyrolytic graphite [25]. Thermomechanically
treated low density open-cell thermoplastic polymeric foams are also meterials,
which exhibit negative Poisson’s ratios [15, 22, 27, 28]. These materials are
usually porous and have a spongy nature with a lot of voids and a compli-
cated microstructure.

From the microstructural picture of these materials, which exhibits non-
convex cells with re-entrant corners, a number of micro-structures and mecha-
nisms have been proposed for the explanation and the study of this effect.
These examples are not actually proper materials, which can be found in na-
ture, but, as manufacturing technology and micromechanics attain actually
a higher level of development, the possibility of constructing materials with
these microstructures as prototypes continuously grows.

Cellular microstructures composed of beams have been successfully used for
the modelling of linear and nonlinear elastic properties of two-dimensional and
three-dimensional cellular materials or honeycombs; the results correlated well
with experimental measurements [5-7]. In the classical case for materials with
positive Poisson’s ratio, polygonal, convex cells are appropriate for their model-
ling. The same tools with non-convex cells, with re-entrant corners are able to
predict an overall mechanical behaviour with negative Poisson’s ratio [10, 12,
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22]. Notice here that spongy parts of bones have lattice-like structures, a fact
that indicates the significance of this work for applications in biomechanics.

Random isotropic granular materials with a ratio of interparticle tan-
gential to normal stiffness greater than unity has theoretically negative Pois-
son’s ratios [26], although one should accept that this case is physically rather
unlikely to occur for particles made of natural materials.

Moreover, certain mechanisms formed by microstructures composed of
springs and sliding collars, containing also re-entrant corners, are able to exhi-
bit negative Poisson’s ratios [11,29]. Mechanisms composed of rigit bars and
folded nets constituting tensile networks, have also been proposed, for achieving
the same Poisson’s ratio effect [13]. It is of interest to observe here that optimal
microstructures, that are produced by homogenization-based topology opti-
mization techniques, have an analogous structure with re-entrant corners
[2, 3]. Furthermore, for completeness, it should be mentioned that unilateral
Poisson’s ratio, i.e. different ratio in tension (greater) than in compression has
also been reported for several low-density rigid plastic foams under conditions
yielding pseudo-elastic values, as for example polystyrene-beam foams and
polyurethane foams [30].

Finally, microstructures which appear in the course of the homegeniza-
tion studies for composite materials exhibit the same effect. The elastic chess-
board composites of ref.[31] belong to this class of structures. The appearance
of negative Poisson’s ratio for composites made of classical, with positive
Poisson’s ratio, composites is also not excluded, as the estimates provided
in ref.[32] clearly show. A detailed study of composite materials with negative
Poisson’s ratio, which includes two-dimensional two-phase composites with
hexagonal symmetry has been undertaken in ref. [14]. The same behaviour
can also be produced by multiscale laminates.

The importance of having materials with negative Poisson’s ratio has
been early recognized with respect to modern structural analysis applications
especially in the aerospace industry. These materials should have a high shear
modulus relatively to the bulk modulus. This correlation of the moduliis espec-
ially appreciated, if the material is used in sheet or beam form, as it is actuslly
the case in most structural applications [12]. Moreover, the deformation pat-
tern of elastic structures made of such materials generally differs from the
ones made of classical materials [15]. This latter effect requires a new way
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of thought for the design of structural elements or structures, but, at the same
time, it opens new possibilities for novel applications. For example, a sand-
wich panel or beam with core made of this new material will exhibit a dome-
like double curvature in figure. Thus, it will allow a cold-metalforming treat-
ment for the production of the shell from initially plane panels. The last advan-
tage, as mentioned here, results in a reduction of the stress concentration
factors in the shell, which, in turn, it enhances the crack and fatigue strength
of the structure.

3. LIMITS OF POISSON’S RATIOS IN ELASTIC CONTINUA

In the framework of the theory of elasticity for isotropic materials the
mechanical behaviour is described by the three material constants: the elastic
modulus E, the shear modulus G and the Poisson ratio v, which are given by
the well known formulas:

. E
G__2(l+v) (1)
p
O=(e +ey +&)= pE =T 2)
3(1-2v)

where K is the bulk modulus of the material and 6 and p express the volu-
metric strain and the applied hydrostatic pressure, respectively.

From thermodynamic reasons, implying that E, G should be positive
and that K is positive, the lower and the upper bounds for the Poisson ratio
read as follows [33]:

A<v<y 3)

For orthotropic and generally anisotropic materials the elasticity rela-
tions are more complicated and involve a greater number of material con-
stants. The basic thermodynamic requirement that the work done by a given
stress must remain always positive, when applied to the relations of the
orthotropic or general anisotropic elasticity, yields bounds on the admissible
Poisson’s ratio. However, in ref. [33] a value for v;3=1.92 was reported for
a composite material, as it is derived from the one of the limits established
in Eqs. (4.1) This value for v;, is considered as excesive. However, more strin-
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gent values for the limits of Poisson’s ratio have been established in ref.[34],
which are expressed by either of the inequalities:

' E
11
|V|2| < { (1'V23) 2E22 } (4'1)
or
E
2 Ey Ey S
Wy, Vo "13 E Lel- Yi2 E, '”%3 E, B E (4.2)

where the double indices denote the values of the respective quantities along
the axes of anisotropy. Applying these constraints for the Poisson v;;, reason-
able values for these quantities have been established [34-36].

4. CELLULAR BODIES

While materials with extreme values for Poisson’s ratio are not usual,
the overall mechanical behaviour of microstructures may attain a variety of
phenomenological Poisson’s ratio values. Experimental evidence with foams
containing cells with re-entrant corners [22] and from the relevant results
applying the numerical homogenization. theory [2], we may construct micro-
structures with an adjustable mechanical behaviour, which exhibit positive
or negative Poisson’s ratios. For the study of the overall mechanical proper-
ties of these materials we assume that they are periodic, i.e. created by arrays
of a representative unit cell. Moreover, we assume that the overall mechanical
behaviour of the material can be described by the classical elasticity relations.

In this framework a homogenization problem is posed as follows: find the
elasticity constants of the continuous model, which lead to the same mechan-
ical behaviour as the one of the material with the periodic microstructure.
To this end a detailed analysis of a representative unit-cell is performed and
a best fit method is followed, as it will be shown in the numerical examples
in this paper. This technique is also valid for continuous structures with
periodic inhomogeneities (i.e. composite materials, etc) and will be studied
in the next section.

The possibility to adjust the overall mechanical properties by changing
the geometric or material properties of the microstructure constitutes the fol-
lowing inverse (optimal) design problem: «find a microstructure for which the
material has a given (or optimal in some particular sense) mechanical beha-
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vtoury. In the following section numerical examples with two-dimensional
materials, made of periodic, star-shaped beams as microstructures, are pre-
sented, followed by a mathematical and numerical approach of the homo-
genization method in different types of bodies. The mechanical properties
of these materials will be presented.

5. THE NUMERICAL HOMOGENIZATION METHOD

For both a discrete (beam-like) and a continuous (composite), periodic
structure, an equivalent homogeneous model can be constructed by using the
homogenization technique. An appropriate numerical method for the applica-
tion of this technique is developed here. It is based on the use of finite-element
modelling for the real cell of the structure and on, optimality-criteria based,
numerical homogenization concepts. The method developed will be applied
for the numerical treatment of the examples presented in the last section.

Let us consider a representative unit-cell of the periodic structure, which,
for simplicity, is assumed to be two-dimensional (Fig. 1). Let the unit cell be
orthogonal with dimensions equal to /; and /, along the two coordinate axes
and let it occupy the area Q with boundary T'. The boundary I'is composed
of the complementary and nonoverlapping parts I'y. I',. I'; and I, (i.e. I}
vy vl uI"y=IT ~ Ty= & etc). A unit cell of the real structure (case
IT in Fig. 1) and a unit cell with the same dimensions of the sought homo-
geneous structure (case I in Fig. 1) are considered. The cells I and II are sub-
jected to the three unit stresses, respectively:

problem (1): ¢;=1, 6y=0, 63 ="T1a = Ty = 0,
prOblem (2): 0 = 0, Gg — 1, G5 =\T1a = Gap = O, (5)
problem (3): ¢;=0, 6y =0, 63="T1g = Tg = 1

as it is shown in Fig. 1.

The solution of cell I for these loading modes can be based on simple
engineering mechanics relations, due to the assumption that the dimensions
of the periodic cell are small with respect to the dimensioas of the structure.

For the cell IT a finite-element method is employed for the solution of the
above static-analysis problems. Moreover, the following periodicity restraints
are taken into account (as multipoint constraints) in the above described
problems: for problems 1 and 2 displacements on boundaries I't. I'; along
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Fig. 1. Elements of the numerical homogenization technique for a cell. Case I: homoge-
neous cell, case II: real structure cell, cases (1), (2), (3): unit prestresses.
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the horizontal direction 1 are the same, for problems 1 and 2 displacements
on boundaries I'y, I, along the vertical direction 2 are the same and for prob-
lem 3, boundaries I';. I'';. T'y and I'’, remain straight lines after deformation.
The essence of the energy-based numerical homogenization method is that
the parameters of the homogeneous cell I are appropriately chosen, so that
this cell has the same deformation energy with the cell of the real structure
(cell II), if both are subjected to the same deformation patterns, which respect
the periodicity assumptions, i.e. they are periodic for the whole structure.
If the parameters which define the mechanical behaviour of cell I(e.g. the
elasticity constants) are gathered up in the design vector @, the numerical homo-
genization method can be described by the following identification problem:
Find a as a solution of the optimization problem:

16i)

’ 2
) 13 @ 1)
:[PénAm 7; W, { l;[ ") - I;I ™) (6)

Here Aaq is the admissible set for the material parameters of the homo-
genized cell, i runs over all independent periodic deformation patterns e(i),
which are considered, wi are appropriate weights, which transform the multi-
objective optimization problem into a classical one, with a cost function us
in (6), superscript I or II stands for the quantities of cell I or II respectively
and Ili, is the internal energy of the considered structure.

The identification problem (6) can be solved either by classical numerical
optimization techiques, or by neural-network based methods [37, 38]. In the
sequel we will describe a simple procedure, which is based on the optimality
criteria method for the solution of a certain class of problems (6). This method
avoids the formulation and the solution of large scale optimization problems,
and if it can be used, it is considered to be suitable for structural analysis
applications [1].

Let us assume for simplicity here that all w’s are equal to one. Moreover,
we assume that the homogenized unit cell I obeys the classical isotropic ela-
sticity relations:

[ \ 3
iz e 0 rol
8 E E
I
e= E'2 =§ '-]\3,— 'E 0 > < 02 L‘:KOO (7)
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The design vector a is chosen as: o= [a, a,]T = [YE, -Y/E]T.

i) N
The internal energy is expressed by H=I0“’)T ¢ dQ for alli = LII,
Q

in
where Q is the area of the considered cell. For simplicity we assume here
j = 1,2,3, that A.a=R2
Under the above assumptions problem (6) reads:

2
(o,l(l)T(a)el(l)(a) . oll(I)Tell(l))z + GI(Z)T(a)el(Z)(a)_ 0Il(2)Tell(2)) *
| dQ

min -—I
2 2 2
aeR Q| (o'(J)T(a)elm(a) o dll(3)Tell(3))

For the assumed unit stresses (5) and the elasticity relations (7) we get
for the unit cell T that:

1) I =
ell(l)""aloll(l):al %( )_azo‘ a,

12) = 12) =
el1(2) = 0(2021(2) =q, e, ) = ,0, @) = a, 9)

eJl(3) =2(al_ a, )0'31(3) = 2((!,1- (12)
with all other components equal to zero.

Moreover, the virtual work equality for the cell II reads:

i )T
[0 10 o - [ PP =123 (10)
o) Q
?

for all given unit stresses of (5) (i.e. Su(l) = 1 on I'; Su(1)=0 on [y [V, ete.).
Finally, the optimality conditions for (8) are written by means of (10)
as follows:
«Find ay, ay, such that:

da A2~ a,) )
bf[al’olla)Telm)]dQ'é'(x_:'+j[ 2((11-(12)-0"(3)Te"(3)]d$'2 8:1207 =0 A1)
Q

) 9[2(a -0,) |
2(-a GOTHD g1 2 g
é[( " %) J 3ty

By using (10) the area integrals are transformed into boundary integrals.
Thus, we get the following optimality conditions:

(12)
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«l'ind oy, oy such that:
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9

(14)

Variable a, (the elacticity modulus E) results from (13) and (14) vas follows:
(15)

Variable o, (the Poisson ratio v) may now be calculated either from (15),
or from the elasticity relations (1), which have been assumed to hold true.

Analogous relations can be extracted for the more general case, where
the homogeneous model I is assumed to obey the orthotropic elasticity
relation or the general anisotropic elasticity relations [2].

6. OPTIMAL DESIGN CONCEPTS

The inverse homogenization problem can be formulated analogously
to the direct problem of the previous section. We make here the same assump-
tions and we consider again the cells I and IT and the unit stresses (1) : to (3)
of Fig. 1.

Now the homogeneous cell I is given, that is the corresponding material
constants (7) are known and constitute the goal of the optimal design problem.
On the other hand, the real cell II may now be modified by means of a certain
number of design parameters, which are summed up in the design-vector p. For
instance, either elasticity constants of the various constituents in a compos-
ite structure, or the shape of the inclusions in a reinforced composite, or the
type and the shape of the microstructure, may be considered as design varia-
bles by an appropriate choice of the elements of vector .

By an analogous reasoning to the one used in the previous section, the
optimal design problem reads:

Find B as a solution of the optimization problem:

s o o 2
pun, 7 2% | IT€0-T1e%p) a6

I
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Here Baq is the admissible set for the design variables p and all other quan-
tities are defined after problem (6).

As with problem (6), problem (16) can be solved by means of various
methods. A detailed study of this problem is not included here. The reader
may consult refs. [2, 3], among others, for analogous recent studies. The para-
metric investigation of the next section may be used to help the formulation
and the study of the above outlined problem.

7. APPLICATIONS OF THE HOMOGENIZATION METHOD

As a first example, a fiber-reinforced composite material is considered.
A cross section perpendicular to the direction of the fibers is shown in Fig.
2, along with the dimensions of the problem and the representative unit cell
ABCD. All quantities here and in the sequel are assumed to be measured in
compatible units. The finite element discretization of the analysed part, which
is considered as a two-dimensional plane stress problem, is shown in Fig. 3,
where the initial and the deformed configurations for a unit loading at the
boundary AB are shown. For the application of the numerical homogeniza-
tion technique and the determination of the overall mechanical properties
of the composite material, support conditions, at the boundaries BC (resp.
AD) which prescribe zero vertical (resp. horizontal) displacements ave con-
sidered. Moreover, at the boundary BC (resp. AB) the horizontal (resp. the
vertical) displacements are forced to be equal by means of the multipoint
constraint strategy of the finite-element method.

For the matrix, which occupies the region €, in the finite element model
of Fig. 2b, an anisotropic elastic material is considered with elastic modu-
lus E, =102 and Poisson’s ratio v=0.30. For the fibers, which occupy the re-
gion Q,, an isotropic material is also considered with v,=0.30 and values of
E, between 10 and 103. In this way a parametric investigation of the consid-
ered composite is performed.

The values of the elastic modulus E and the Poisson ratio for the compos-
ite, as they are calculated by the numerical homogenization method, are shown
in Figs 3 and 4 respectively. In the same figures the values of E, as predicted
by the analytical method based on the Hashin and Rosen model (HR), pre-
sented in ref. [39], are also plotted, as well as by the unfolding model, intro-
ducing the concept of mesophase between phases, and developed by Theo-
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caris [40, 41], designated by (IF). In this model the extent of the volume (spe-
cific) of the mesophase between phases was assumed equal to vi=0.001 ve,
where v is the volume fraction of the composite taken equal to unity for the
unit-cell of the model (see ref. [40] for an extensive study of the validity and
properties of these realistic models). It can be observed that an excellent accu-
racy is generally achieved between values of the elastic modulus E of the com-
posite derived from the homogenized model and the unfoldig model, whereas
there exists always a discrepancy between the values of homogenized model
and those derived by applying the Hashin-Rosen model.

A second periodic fiber-reinforced composite is now considered with the
arrays ol fibers placed in a staggering configuration as it is shown in Fig. 5a.
The finite element discretization of the analysed cell is shown in Fig. 5b. The
same concepts for the homogenization procedure and the determination of
the elastic constants of the composite, as in the previous example, are used
here. In this example the material constants E2=100, v2=0.3 for the matrix
material were kept constant, while the elastic properties of the inclusions were
varying between E;=10 and E;=103. For this range of materials Poisson’s
ratio was assumed constant and equal to vi=0.1. Figures 6 a,b,c present the
variation of the elastic moduli of the composite, as the ratio between the mo-
duli of the phases are varying between the limits stated above. Similarly,
Figs. 7 a,b present the variation of Poisson’s ratio of the composites versus
the ratio E;/E, of the respective moduli. Since the elastic modulus of the
matrix is kept constant and equal to E,=100.0 the abscissas of these dia-
grams indicate the variation of the E;-modulus.

It can be deduced from the plottings of these figures that in the previous
results a classical mechalical behaviour with respect to the Poisson ratio of the
composite attains always positive values. A similar behaviour was observed for
a variety of fiber-matrix configurations, analogous to the ones of Figs. 2 and
5 not only with fibers of circular cross-sections, by also for composites with
ellipsoidal inclusions. It may be therefore derived that inclusions of compli-
cated shape are necessary to form composites with negative Poisson’s ratios.

Let us consider now materials with a specific type of microstructure,
which can be modelled by means of beams and rods. The physical analogue
of this example comes from foamed and porous materials. For a negative Pois-
son’s ratio effect, non-convex shaped cells with re-entrant corners must be
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Fig. 5. a) Configuration of a fiber-reinforced composite, b) Finite element model of

analysed unit-cell.
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considered, as it is dictated from the results of refs. [2,3,6,11-13,22, 27-30]. It
is therefore convenient to undertake a study with the convex-shaped unit
cell of Fig. 8a. The microstructure of the material produced by this cell is
schematically shown in Fig. 8b.

Applying the numerical homogenization method already stated, we model
the unit cell of Fig. 8b by means of two-dimensional beam finite elements
and we consider fixed-end boundary conditions (support) at point 1 and a
unit load in the horizontal direction applied at point 7 of Fig. 8b. We further
assume that the beams have an area equal to unity, a moment of inertia equal
to 1000, and they are made of an elastic material with elastic modulus equal
to E=1000. For various values of the shear modulus G and for a shear factor
equal to 0.3 (resp. to 0.9) we calculate the (phenomenological) elastic moduli
and Poisson’s ratios of the composite, as they are derived by the numerical
homogenization theory. These quantities are plotted in Figs. 9 and 10 for
the shear factors 0.3 and 0.9 respectively. It can be derived from the above
results that a negative Poisson ratio effect is clearly developing with such a
type of composites.

One should nevertheless underline here that the above parametric investi-
gation is extrapolated outside the range of mechanically admissible values for
the material constants, in order to give a better overall picture of the sought
dependence between Poisson’s ratio and the structural constants for a given
cell geometry. In fact, a value of G=333.33 corresponds to a beam material
with v=0.5 and leads to Poisson’s ratio for the microstructure equal to-0.2815
for the case of Fig. 9, and equal-0.1538 for the case of Fig. 10. A value G=1000
corresponds to a beam material with v=-0.5 and leads to a Poisson’s ratio
for the microstructure equal to -0.1524 for the case of Fig. 9 and equal to
-0,0120 for the case of Fig. 10.

The previous results clearly indicate that mainly the shape and the
geometry of the microstructure and not the material properties of its elements
are primarily responsible for creating composite materials with negative Pois-
som’s ratios.

8. CONCLUSIONS

In this paper the topological optimization problem of discrete structures
has been applied to study the influence of the individual mechanical proper-
ties of the constituent phases of a composite material, or structure, on the
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Fig. 8. A star-shaped two-dimensional beam cell with re-entrant corners. Finite element
discretization and mode numbering.
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microstructure as in Fig. 8 possessing a shear factor equal to 0.3
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overall properties of the product. The modern method of topological homo-
genization technique was used, expressed in terms of element mutual energies.
The construction problem is formulated as an inverse problem solved by a
multiple constant optimality method with weights for the basic cells, which
minimize the differences between the model materials and the real structures.

Numerical results show that materials with arbitrary constitutive para-
meters can be constructed with assigned in advance properties. However,
for the extreme cases, where special types of material with negative Poisson’s
ratios are required, they can be achieved only by playing with the geometry
of the inclusions, which should be, in general, with reduced mechanical para-
meters, thus indicating that only special types of foamy materials with high
degrees of porosity are the most convinient.

The problems investigated in this paper show interesting and sometimes
unexpected effects of the mechenical properties of composite materials and
structures on their corresponding values of the elastic moduli and especially
on values of Poisson’s ratio. Although these effects may contradict our intui-
tion and long term experience, acquired by testing ‘regular’ materials in the
constructions, they also suggest that perhaps our knowledge of the properties
of the materials is rather restricted to only a small section of the whole spec-
trum of possibilities for creation of new and more intelligent meterials which,
however,exist always around us from the beginning with all biological materials.

Finally, a side issue of this study, but of great scientific importance, derives
from Figs. 6 to 8 where the results of the variation of the elastic modulus
and Poisson’s ratio of the composite versus the ratio of the moduli of the pha-
ses, as these have been derived by applying the optimization method on the
homogenization procedure, were compared with classical models in the theory
of mechanical behaviour of composites. The two models which are confronted
with the results of the homogenization method were the wellknown Hashin-
Rosen model and the Theocaris’ unfolding model. While a rather significant
discrepancy between the homogenization results and the Hashin-Rosen model
exists, there is in general an almost coincidence of results between the homo-
genization results and those derived by applying the unfolding model, which
takes into consideration the development of a mesophase as a boundary layer
between the main phases of the composites. This is another proof of the

soundness of these models.
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NEPIAHYH

(Mwkpo)-katockevoi petofintod Adyov poisson: apyol oyediucpod

Ol adEnuéveg amarthnoeis yio TV PEATIETY 63067 TAY GUYYPOVWY XATAGREVGDY
%ol oToyslmy pyovdy ot cuvdvaopd pt tig &EeMéeic oy bmoloyioTind) pMye-
vl %ol oTHY TEYVOAOYir TEV xotacxevdy, xabioTody cfpepa EpuxTy) TV PeAti-
oTomolney VAxdV xal xatacxevdv. ‘H @don Edihov pdc Siuddoxer &ri povorBura
PN avis cueTHUNTE GroTehodpeve &md iobrpoma xal Spoyevl) HAxd &méyouy TOAD
amod To va lvar BéATioTa: S8v &yt xdmoLog TP VO TTHPATNPNOEL THY WLOPPH %al TNV
¢owrepiny) Sopn TGV 86TEY Yk V& guveldnromorioet még Tepimou povdlel Eva BéN-
TioToe oyediacpévo HAxb, té bmolov mpoiiAle amd Prodoyinds Sundikaciss EEeifews
SuLdpxeLng TOANAGY aldvev.

Ol cOvheteg xataonevds xal Ta Shxd émitpémouy, o& xdmota Extacy, THY Eop-
poyn Tév dpyév Tob BertioTou oyediaouol ik v odvbeoy évdg ousThpatog oL
touptdler otig Tibépeves amaithoeis. Kataoxeugg mod 2pgaviouv péyper xal dpvy-
Tixd Abyo Poisson elvan dpintés, mapdho mod o mpdyty Oewpnon patvovral va elvat
¢ orminég. Lxomdg THe mapovors dpyactauc elvar # Sicpebvnon Tob Eheyydpevov, mba-
vids pvnTinol Adyou Poisson yid xataoneuds kal (IkPOXATAOXEVES %ol 1) UEAETH
700 gawopévou § GolunTidy uebédwy el obvlBeta Hhxd 3 elg Shxa pé pixpodop
clocpyove®dy yovidy, pé ™y Ponbeia puebddwv dpbuntinic BedtioTomoroews %al
TEYVIXGY TTPOGOUOLWCEWS (L& TETEPUGUEVR GTOLYELX.

To odvleta Hhxd, 6mwg dxpiBdc xal T avlpmmva doti, d&v Eyovv Guoyevi
%ol lobrpomn wixpodout. *Axdpn xal &v 6td émimedo Tig xaTAGKELTG ¥ PYOLLOTIOL-
obvron uéfodor THg pmyaviniic TAY CUVEGY GOUATGY Y& THY WNYoVIXY) TEOGoRoi-
wom, N wxpodoun ol HAwod elvar % IdrbtyTa Exelvy %) omola EmTpémer ToV Eleyyo
TEHY ppevix®y yopexTNeloTxdy Tol OMxol xel TNV Tpomomoinsy Toug dvdAoyw
pé Tic avdyxeg oyeduopol. Me v yeney cuyyedvey Texvixdv BéATLoTOL TOTTOAO-
yieod oyediaopol, pé ypvoy Suoyevomonoews, avTipeTOTileTar O TEdBANuLe Tod
avohuTinod oyedtacpod Tob VAol (m.y. 7 naTdAAMAy pixpodopd), To VA XAT.).
Ity ouvéyein oTd émimedo TG naTHo%ELTG YPNOLLOTOLODVTAL TEYVIXEG TTPOGOULOLED-
oewg Ut XATEAANAOUG, OAXOVG PULVOPLEVOAOYLXOVG VORoUs EAaoTin6TNTOS, bTwg Tpo-
#OTTOLY GO TIV GUVONLXY] UMYOVLXY] GUUTTEQLPOPX TOD YUPAXTNELETIXOD %EADPOUG

700 YAxob. Of dpyis Tie wixpo-paxpo-mpoceyyicewg pmopoly v avalntyoly oty
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TPOGOWOLWEY) GUVEYEMY XATHOXELGY (e UOVTEAX EAXGTIXGY, TAULGLAXGY QOpéwY.
Tevixddg mpoxdmrouy dpbbrpones éhactints otabeptc mob cuoyerilovran pé Tig xap-

nTég axapdies T@v oToryeinv wod cuvieTolv Ta Touydpate Tod xehdpoug ¥, ot
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vo o yevixd mAaiolo, u€ v tomohoylw THe pixpodoutic (éhugpog). *Emmiéoy,
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" dotoyla, wall ué ™y petafBacy dno loyvpa ot OAidy ot loyupa 68 Edxuoud cup-
mepLpopa e adfavépevo mop@deg, EEnyolvrar émiome ué mapbpoie povrélx.

To powvdpevo tol apvnTixol Adyou Poisson &yer émiomg EEnymbet ue dupod-
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poto EhoTix@y TAanotov pé pmyaviopode. Tlpémer €06 v tovichel étu %) dvisotpo-
mlo xal 6 peTaBAnToc Adyog Poisson ddvarar ve Eyouv Oetin Emippon, petabd dAhwy
OTA YUPUXTNOLOTIXG AVTOYHE, GTOVE GUVTEAEGTEC GUYXEVTPWOEMS TAGEMY Xal GTHY
aréxpion aoToylug Ths xataoxkeuiic. Eiduxdtepav, Hhixd ué dpvnrindy Abyov Poisson
EmuTpémouy TV UElwoY) TGY CUVTEAEGTRV GUYKEVTPOGEMS TAOEMY X0l THY XATUGREV]
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iy mapolon époyasia ) éupdvion xol % ixavétyra oyediocpol Ohxdv pé
apvyTixov Aoyov Poisson amodzwvieron pé thv Bonfeir dpbuntinéy moapaderypd-
Twy Tod Umehoyiclnxoy pé v uébodo thv memepacpévev orouysiwy, Yk Topmdy
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