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1. Introduction. By a topological algebra we mean in the sequel a
complex linear associative algebra equipped with a Hausdorff topology
making it a topological vector space with a separately continuous mul-
tiplication.

The spectrum (or Gel’fand space) of such an algebra is, by definition,
the set of all non-zero, continuous, multiplicative, linear forms of the
algebra, endowed with the topology of pointwise convergence. Hence, it
is a subset of the weak topological dual of the respective topological
vector space underlying the topological algebra considered.

Now, it is quite obvious that the latter space may be, in general,
the empty set. However, there do exist important examples, even of non
locally convex topological algebras, for which the preceding topological
space is nom vacuous: e.g., commutative, complete, locally bounded
algebras with identity (cf. [63; p. 13, Proposition 4.2]), or colimits in
the category of topological vector spaces of commutative Banach alge-
bras with identity (cf. also [32; p. 108], and [31; p. 214, Proposition 2. 1]).

Thus, it will be part of our hypothesis for a given topological algebra
that its spectrum is not the empty set, so that the latter space will be, by its
definition, a Hausdorff completely regular space.

Now, «compactly generated spaces» (shortly: k-spaces) constitute
indeed (cf. N. Steenrod [51]) a «convenient category» of topological spa-
ces, so that it would be of course interesting, at least, to have the spect-
rum of a given topological algebra to be a k-space. This, however, is
not always the case, whenever we are outside the category of complete
normed algebras (: Banach algebras), even for the very particular, but
important as well, subcategory of Fréchet locally m-convex algebras [40],
as this has been pointed out by A. G. Dors [13]. On the other hand,
Fréchet algebras admitting «functional representation» have always
spectra, which are k-spaces [60], a fact which is actually true for a much
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more general class of topological algebras than the preceding one (cf., for
instance, [34; p. 474, Theorem 3. 1], and Theorem 3.2 below). The alge-
bras in question still admit functional representation, retaining, howe-
ver, the separate continuity of the multiplication, a fact which provides
at least a bigger frame for the appropriate description of the class of
topological algebras for which the pertinent result is valid (cf. Theorem
3.2 in the sequel), towards a more categorical context, for the same class
of algebras, based on their property of being «k-algebras», and whose
spectra are k-spaces, as this has been treated in Ref. [14] (: ibid.; Corol-
lary 3. 13).

The class of topological algebras, we are dealt with, is thus wide
enough to include almost all the important topological algebras which
appear in the applications, while their particular structure permits at
the same time to extend and enlighten as well many of the standard
results, which have been obtained in the particular cases previously con-
sidered in the literature. Besides, whenever the spectra of the same
algebras are k-spaces, the «topological algebra spectrum-functor» natu-
rally behaves «contravariantly» relative to the well-known «Michael
decomposition» of a given locally m-convex algebra, when restricted to
the respective particular class of topological algebras under considera-
tion (cf. Theorem 3.3 below).

In the last two sections of this discussion we are concerned with
applications of the technique developed so far within the preceding class
of topological algebras, firstly, in connection with certain considerations
of the current russian literature, in particular (cf. [43], [15]), and refer-
red to what might be thought of as «<homotopy theory within the context
of Banach algebras», and also recently discussed, in an extended form,
by J. L. Taylor in Ref. [53], [64], [55], however in the same context of
the Banach algebras theory. Now, it is proved that the class of topologi-
cal algebras considered herewith is, so far, the more natural frame for
this kind of applications of the general theory, the Banach algebras
theory framework being quite technical and in fact unnecessary. The
same may also be considered as an extension to more general topological
algebras of the well-known program firstly initiated, for Banach alge-
bras, by G. Silov [50], and then subsequently set forward by R. Arens
[6], including the well-known Arens-Royden Theorem [5]. In this con-
ITAA 1975
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cern, it also seems to be possible to extend within the same context ana-
logous considerations by J. C. Wood in Ref. [61], as well as similar results
in the work of M. Karoubi [23], [26]. Within the same context (cf. § 6
below), we also give an extended version of some recent results of
V. Ya. Lin in Ref. [28], referred to the theory of «matrices depending
(continuously) on parameters». Secondly, we are dealt with «sectional
representations» of topological algebras, a subject which we intend to
discuss, in a more detailed manner, somewhere else.

In this context, another possible direction of applications, which
seems to be naturally embodied within the preceding class of topological
algebras, is connected with certain considerations by G. Tomassini in
Ref. [56], referred to what might be viewed as «topological algebraic
geometry», hence its natural connection with «topological algebra shea-
ves» [35], being thus in agreement with the current literature [19], as
well as with certain «differential geometric considerations in topological
algebras theory» very recently applied, in particular, by S. A. Selesnick
in Ref. [47], however within the same special framework of Banach
algebras theory.

We conclude with a short Appendix, where we briefly comment on
certain recent results in Ref. [3] and [17] which are also quite naturally
fitted within the same class of topological algebras discussed herein.

The results obtained so far in connection with the above conside-
rations are mostly given without proofs, the present discussion being
essentially of a preliminary nature, intending thus to return with more

details in some future publications.

2. Spectrally barrelled algebras. By a Fréchet topological algebra
we mean a topological algebra in the sense of the preceding section, for
which the underlying topological vector space is complete and metrizable
(: Fréchet, in the «polish sense»). This class of algebras includes, of
course, all Banach algebras and even more all the Fréchet locally convex
and /or the locally m-convex algebras (:R. Arens - E. A. Michael [4],
[40]). As an immediate consequence of the definition, the topological
algebras in question have (jointly) continuous multiplication (:continuity
in both variables).
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On the other hand, the preceding class of algebras is contained in
that of barrelled topological algebras, which again may be, in particular,
locally convex or locally m-convex ones, and which are characterized by
the respective property (i.e., barrelledness) of the underlying the given
algebra topological vector space.

In this respect, this is actually a common device in characterizing
special classes of topological algebras, in terms of particular‘properties
of the respective topological vector spaces, the properties in question
being, however, not the genuine algebraic analogon of the respective
linear ones, or even more (: «Silov’s point of view») of the appropriate
«spectral» (: topological algebra spectrum) ones, as this will presently
become clear from the context below.

Thus, the algebraic analogon of the defining property the preceding
class of algebras is that of being the topological algebra m-barrelled [33],
[34]. This means, by definition, that every m-barrel (i.e., idempotent
barrel) in the topological algebra considered is a neighborhood of zero
(ibid.). In this concern, we notice that in a locally m-convex algebra
(in the sense of Arens - Michael ; ibid.) there always exists, by definition,
a local basis consisting of m-barrels (ibid.).

Now, there are even classical examples showing that the «inclusion
relation» between the preceding various classes of topological algebras
is in each case a genuine one. Besides, it has been proved (cf. [33], [34])
that, by applying the class of m-barrelled topological algebras, one can
extend to this class of algebras, and better explain as well, several basic
facts concluded, more or less so far, for the class of Fréchet algebras
only, the metrizability of the respective topological vector space being
thus involved by excess, the crucial fact in this respect being, of course,
the barrelledness of the space in question, and indeed its algebraic counter-
part, i. e., the m - barrelledness of the topological algebra under consideration.

In this respect, a fundamental consequence of the «defining struc-
ture property» of an m-barrelled (topological) algebra is that three basic
classes of subsets of the spectrum of the algebra coincide. That is, one
has the following result (cf., for instance, [34; p. 470, Corollary 2.1]):

Theorem 2.1. Let E be an m-barrelled algebra, whose spectrum is M (E).
Then, the following classes of subsets of M (E) are the same: 1) the equiconti-
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nuous sets, 2) the (weakly) bounded sets, and 3) the (weakly) relatively com-
pact sets.

(Sketsch of the proof) : The crucial step in the proof of the preceding
statement is the fact that the (weakly) bounded subsets of the spectrum
of an m-barrelled algebra are actually equicontinuous (and this is based
on the defining structure property of the algebra; ibid.), so that one
concludes the coincidence of the families 1) and 2) above (and this is of
a special importance, as we shall see below), and hence the desired result
now follows by a direct appealling to the Alaoglu - Bourbaki Theorem.

In connection with the preceding result, we notice that an essential
part of the analysis, we are doing below, is the implications which in
each case the coincidence of the three preceding classes of sets has for
a given topological algebra, this actually leading to the characterization
of the particular classes of topological algebras, we are going to consider.

This is schematically explained by the following diagram (sch. 1),
which subsumes some basic facts of the analysis which follows :

Now, we remark that the coincidence of the preceding three classes of
sets does not characterize the m - barrelled algebras: By applying the Alaoglu -
Bourbaki Theorem, it is easily seen (cf. sch. 1) that the coincidence of the
three preceding families of sets is equivalent with that of the families 1) and 2),
in the statement of the above Theorem 2. 1, so that the desired assertion
as above would equivalently be proved by showing that topological alge-
bras for which the families 1) and 2) coincide are not, in general, m-barrelled :
A counterexample has already been given, in a somewhat different con-
text, in Ref. [33; p. 306]; besides, the same conclusion follows by some
recent considerations of A. K. Chilana in Ref. [12]|, as this will become
clear from the discussion below. (In this concern, cf. also Ref. [38;
p. 154, § 3]).

Thus, we are naturally led to set the following :

Detinition 2.1. We say that a given topological algebra is spectrally
barrelled, if the equicontinuous and the weakly bounded subsets of its
spectrum coincide.

Concerning the preceding definition, the terminology applied
intends to remind the analogous situation one has in the case of the
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weak topological dual of a given barrelled topological vector space, this
being now expressed in terms of the spectrum of the topological algebra
under consideration.

m(E)

pat™ "
s spect. harld,
<<

492010;/«11
a.'l;ebra

(3) w.-relat. comlwlct'

Sch. 1.

Now, before embarking on the various consequences, which the
requirement, set forth by Definition 2.1, has for the structure of a given
topological algebra, it would be, at least, more instructive to look at the
same program by admitting a weaker condition, than the preceding one,
for the spectrum of a given topological algebra.

Thus, the coincidence of the families (1) and (3) in (sch. 1) above charac-
terizes the continuity of the respective Gel'fand map g:E—> C.(M(RE)) for a
given topological algebra E, whose spectrum is M (E). This is a strengthen
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ed (and for locally convex algebras, equivalent) version of a previous
result in Ref. [33; p. 305, Theorem 3.1]: That is, in a more general
context, one has the following, which subsumes and clarifies the parti-
cular cases considered hitherto. Namely,

Lemma 2.1. Let E and F be given topological algebras, and let
Homg (E, F) be the set of non-zero continuous algebra homomorphisms of E
into F, endowed with the topology s of simple convergence in E (: genera-
lized spect rum of E with respect to F [36; p. 344]). Moreover, let S
be a given family of subsets of Homs (E, F), and besides considered the map
(: generalized Gel’fand transform (ibid.)):

(2.1) g:E—>Cs(Homs(E,F),F): x—>g(x) (:h—>g(x)(h): = h(x)).

Then, the map g is continuous, with respect to the topology of S convergence on
its range as indicated, if, and only if, each member of the given family S is

an equicontinuous subset of Hom (E, F). n

Considering, in particular, a full algebra (cf. also § 3 below), the
above provides a variant towards a conjecture of E. A. Michael in Ref.
[40], i.e., using the terminology applied herein, whether every full algebra
carries the topology induced on it by the respective Gel fand map, its range
being always understood as equipped with the topology of compact con-
vergence. Thus, one has instead, that: every full Warner algebra with
Gel’ fand map continuous is a Michael algebra. Of course, it would be of
interest to know the relevance of this result to Theorem 3.2 of the next
Section. (Cf. also the comments preceding that theorem).

In this concern, we notice that in Michael’s terminology, by a full
algebra is meant a commutative, complete, semi-simple, locally m-convex
algebra for which the respective Gel’fand map is an algebraic onto iso-
morphism [40; p. 35, Definition 8. 3]. (Cf. also [34; p. 475]).

Within the same context, we also note that every commutative, semi -
simple, topological algebra having the respective Gel’fand map continuous, and
which is also a Warner algebra [34; p. 476], it is actually a Michael algebra.
(This extends Theorem 3.2 in Ref. [3%4; p. 476]; an analogous extension
is valid for Corollary 3.2 of the same Ref., p. 477. In this connection,
cf. also the respective discussion given in Ref. [38; p. 155]).
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Thus, several results already concluded for Fréchet algebras, and
more generally for m-barrelled topological algebras (cf. [33], [34]), are
also valid for this more general class of algebras, among of which is a
form of the classical «Gel’fand - Naimark representation theorem» ;
however for this, and further details, concerning the class of topological
algebras in question, we refer the reader to Ref. [37], [38].

On the other hand, the coincidence of the families (2) and (3) in (sch. 1)
characterizes the Nachbin - Shirota spaces (cf. [37; p. 104]), as well as the re_
spective topological algebras (cf. Definition 2. 2 below):

T'o be more comprehensive, we recall some of the details of the
respective terminology: Thus, given a Hausdorff completely regular
topological space X, we shall say that X is a Nachbin - Shirota space, when-
ever by considering X as a subspace of the weak dual space of C.(X),
i.e., X S (C. (X)), via the respective evaluation map, one has that
every (weakly) bounded subset of X is also (weakly) relatively compact
(cf. [37; p. 104]). This is actually the content of the classical homony-
mous theorem, characterizing the barrelledness of a space of the form
C.(X), with X as above, in this respect cf. also the relevant comments
in Ref. [60; p. 265, and p. 272].

Thus, it is reasonable to put the following.

Definition 2.2. Given a topological algebra E, we shall say that it
is a Nachbin - Shirota topological algebra, whenever its spectrum M (E) is a
Nachbin - Shirota topological space.

In case a Nachbin - Shirota topological algebra «admits a functio-
nal representation» [34], then it is, of course, barrelled (: Nachbin - Shi-
rota Theorem), and a fortiori an m-barrelled one. However, every m- bar-
relled topological algebra is Nachbin - Shirota : This is actually an immediate
consequence of Theorem 2.1 above. More generally, every spectrally bar-
relled algebra (Definition 2.1) is a Nachbin- Shirota topological algebra
(cf. (sch. 1))-

In this concern, one has the following theorem which constitutes
a strengthened form of a similar result in Ref. [37; p. 104, Theorem 2. 1].
That is, we have:

Theorem 2.2. Let X be a Hausdorff completely regular space. Then, X
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is @ Nachbin - Shirota space if, and only if, it is homeomorphic to the spectrum

of a spectrally barrelled algebra.

Proof : The condition is sufficient, by the preceding comments.
Now, the necessity of the stated condition follows by the fact that the
space X is homeomorphic to the spectrum of the (locally m-convex topo-
logical) algebra C.(X), which, by hypothesis, is a barrelled one, and
hence, a fortiori, spectrally barrelled, and this proves the assertion. W
' Within the same context, we note that one has an analogous state-
ment to the preceding Theorem 2.2 for barrelled algebras, as well as
for m-barrelled ones (ibid.). All these are actually Nachbin- Shirota
topological algebras, since they are spectrally barrelled (cf. Theorem 2.1
above), hence the extended form of the previous theorem in relation
with similar considerations in Ref. [37].

Besides, as a consequence of the preceding, we remark that a topo-
logical algebra of the form C.(X), when X completely regular (Hausdorff)
space, is spectrally barrelled if, and only if, it is a barrelled one. Thus, the
situation does not contribute towards a characterisation of the completely
regular space X via of its being (within a homeomorphism) the spectrum
of a spectrally barrelled algebra C.(X), as is the case with the classical
Nachbin - Shirota Theorem (cf. also the relevant comments following
Theorem 2.1 in Ref. [37; p. 105]).

3. Spectrally barrelled algebras (continued). We are involved
in this section in a more detailed discussion of the particular class of
topological algebras alluded to at the beginning of this paper, and which
are characterized by the coincidence of the three families of sets in
(sch. 1) (cf. also Theorem 2.1 above). Thus, one has, at first, the follow-
ing result which is an immediate consequence of the foregoing. That

is, we have.

Theorem 3.1. A given topological algebra is spectrally barrelled if, and
only if, it is a Nachbin - Shirota topological algebra, having besides the respec-

tive Gel’fand map continuous. B

It is for the same class of topological algebras for which one obtains
a strengthened form of a «functional representation» result, which for
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Fréchet (locally m-convex) algebras is already essentially due to S. War-
ner (cf. [60; p. 269, Theorem 4]), and for m-barrelled topological alge-
bras has been given in Ref. [34; p. 474, Theorem 3.1]. To be more
comprehensive, we first give the following.

Definition 3.1. Les E be a topological algebra whose spectrum is
M (E). We shall say that E admits a functional representation, whenever

one has:

(3.1) Br= LX),

within a topological algebraic isomorphism, in such a way that X is
homeomorphic to M(E). (In this respect, C.(X) denotes the set of all
complex-valued continuous functions on a given Hausdorff topological
space X, equipped with the topology of compact convergence in X).

In this connection, we shall say that a given topological algebra is
full, if the respective Gel’fand map g : E —> C.(M(E)) is an algebraic
onto isomorphism (we apply the notation of the preceding Definition
3.1; cf. also [40; p. 3D, Definition 8. 3]).

Thus, one obtains the following result, which gives, among other
things, sufficient conditions in order the requirements set forth by Defi-
nition 3.1 above to be valid, and which also conmstitutes still another
step related to a conjecture of E. A. Michael in Ref. [40; p. 36.
CE. also p. 38, Remark after Proposition 8.5]. (In this respect, cf. also
[37; p. 105, Theorem 2.2], as well as [38; p. 153, Theorem 2.1]). That

is, we have.

Theorem 3.2. Let E be a full, spectrally barrelled, Ptdk locally convex
algebra. Then, E admits a functional representation (Definition 3.1). In parti-
cular, E has the topology of uniform convergence on the equicontinuous subsets
of its spectrum, that is E is a Michael algebra [34], whose spectrum is, besides,

a k-space. Moreover, E is actually an m-barrelled (locally m-convex) algebra. m

Scholium 3.1. The proof of the preceding T'heorem 3.2 is essen-
tially based on an analysis of the structure properties for a given spect-
rally barrelled algebra, exhibited by Theorem 3.1 in the foregoing.
(Cf. also the respective proof initially given for m-barrelled algebras in
Ref. [3%; p. 474, Proof of Theorem 3.1]. In this connection, it would be
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interesting, of course, to have the least sufficient conditions, which
would imply, for a given full topological algebra, the situation described
by Definition 3.1 above.

In connection with the foregoing, we also notice that Ptik (locally
convex) algebras have also been applied recently in Ref. [27] (in fact, as
«fully complete» locally m-convex algebras; ibid., p. 47), by considering
«separable (topological) algebras». In this concern, cf. also Ref. [30] and [39].

Now, spectrally barrelled algebras which are, in particular, locally
m-convex ones, and whose spectra are k-spaces behave, in a most natu-
ral way, «contravariantly» relative to the «topological algebra spectrum -
functor» and the respective «Michael decomposition» (cf. the following
theorem), this being, besides, a characteristic property of the spectra in
question to be k-spaces. More precisely, one obtains the following result,
which is indeed a compilation of previous ones in Ref. [37; p. 100, Theo-
rem 1.1] and [38; p. 157, Theorem 4. 1]:

Theorem 3.3. Let E be a complete spectrally barrelled locally m - convex
algebra (being a «limit» of Banach algebras E,, a&€l: «Michael de-
composition», i.e. E=limFE,, within a topological algebraic isomor-
phism [40]). Then, the followingtssertions are equivalent :

1) M(E) (:the spectrum of E) is a k- space.

2) The family {M(Ea) o) EI} (cf. [38; p. 156]) generates the Gel’fand
topology of M (E).

3) M(E) = l_z_n: M(E,), within a homeomorphism.

4) C.(M(E)) is complete, and the space kM(E) (cf. [37: p. 99]) is

also completely regular. m

Within the same context and as a corollary to previous considera-
tions in Ref. [38], we state, in a more explicit form, the following.

Proposition 3.1. Every (commutative) complete «uniform» [38] topologi-
cal algebra E, with Gel’fand map continuous (in particular, a spectrally barrel-
led one (Theorem 3. 1)), may be identified, within a topological algebraic isomor-
phism, with its algebra of Gel fand transforms, being in particular a closed

subalgebra of C.(M(E)).
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(Sketsch of the proof): The assertion is an immediate consequence
of Theorem 3.1 in Ref. [38; p. 155] and the Scholium following its proof
(ibid. ; p. 155). n

On the other hand, for a commutative and complete spectrally barrelled
locally m - convex algebra with an identity element, its spectrum being compact
is equivalent with the given algebra to be a (Q - algebra or, equivalently, a pseudo-
Banach algebra [2]: 'The last statement is a strengthening of a previous
result of Alan-Dales- McClure (ibid.), given recently in terms of the
theory of «topological algebras with a bound structure». In this concern,
cf. also Ref. [38; p. 160, Theorem 5. 1].

Now, a given topological algebra E 1is said to be bounded, whenever
the respective algebra E "= g(E) of Gel’fand transforms of the elements
of E (that is, the Gel'fand transform algebra of E) consists entirely of
bounded (complex - valued, continuous) functions or, what amounts to
the same thing, the spectrum M (E) of the given algebra E is a bounded
subset of Es (:the weak topological dual of E).

In this concern, the following result subsumes and extends as well
previous standard conclusions in Ref. [59] and [40], together with their
strengthened form given in Ref. [34] (: ibid.; p. 472, Theorem 2.2, and
Corollary 2. 4). Thus, we have the following.

Theorem 3.4. Let E be a locally m-convex algebra whose spectrum is
M(E). Moreover, consider the following assertions :

1) E is a Q-algebra.

2) M(E) is equicontinuous.

3) M(E) is a weakly relatively compact subset of E’.

4) M(E)t (: = M(E) v {0}, the extended spectrum of E)
is a weakly compact subset of E’'.

5) E is a bounded algebra.

Then, one has the following implications: 1) =»2) = 3) = 4) = 5).
Furthermore, in case the algebra E is, in particular, a commutative, advertibly
complete [89], spectrally barrelled (locally m - convex) algebra, then all the pre-

ceding five assertions are equivalent.

Proof: The assertion can be deduced by Theorem 2.2 and Corol-
lary 2.4 in Ref. [34; p. 472], by taking also into account Theorem 3.1



466 ITPAKTIKA THE AKAAHMIAZ AGHNQN

in Ref. [33; p. 305], these results being converted within the present
more general context by an immediate application of the reasoning deve-
loped in the foregoing (cf. too Ref. [59; p. 7, Theorem 6, and Propo-
sition 10]). B

In a less technical terminology, one can state the preceding Theo-

rem 3. 4 into the form of the following.

Corollary 3.1. Let E be a commutative, complete, spectrally barrelled,
locally m - convex algebra, whose spectrum is M (E). Then, all the five assertions

of the preceding Theorem 3.4 are mutually equivalent. B

The preceding Corollary 3.1 subsumes a statement given by Pro-
fessor W. Zelazko at the «Bordeaux Colloquium of Functional Analysis
(4-8 May, 1975), in terms of barrelled algebras (cf. also [64]), the latter
result being also the initial motive for the present form of the above
Theorem 3.4 ; this was, essentially, an immediate application of pre-
vious considerations in Ref. [33], [34], now being used within the more
general context of spectrally barrelled algebras, as it has been developed
in Ref. [38] and the foregoing (cf. also the proof of the said theorem
given above).

Within the same context, we actually get the following extension
of the analogous result of W. Zelazko in Ref. [64], even under much
weaker conditions than those in the preceding Corollary 3.1. That is,

we have:

Theorem 3.5. (W. Zelazko). Let E be a commutative, advetribly complete
[59], locally m -convex algebra, having an identity element and the respective
Gel’fand map continuous. Then, the following assertions are equivalent :

1) Every maximal ideal of E is of codimension one.

2) Every maximal ideal of E is closed. :

3) The algebra is bounded.

4) The range of (the Gel’fand transform) ;, for every x € E, is a com-
pact subset of (.

5) E is a Q-algebra.

6) The spectrum M(E) of the given algebra E is a compact space.

Proof : T'his is a consequence of Zelazko’s Theorem in Ref. [64; p. 5]
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(the same Theorem is actually valid for advertibly complete algebras;
however cf. cond. iv) of the same result), plus [59; p. 7, Theorem 6] and
[33; p. 305, Theorem 3.1]. (In this respect, it suffices the given algebra
to be advertibly complete, taking into account the respective results of
E. Killam : Pacific J. Math. 12 (1962), 581 -588), and this finishes the
proof. m

As a consequence, one obtains a strengthening of Zelazko’s state-
ment in the same Ref. [64; p. 4] in the sense that a topological algebra
satisfying the conditions of the preceding Theorem 3.5 has a dense maximal

ideal of infinite codimension if, and only if, it is not a Q - algebra.

The author is much indebted to Professor W. Zelazko for having providing
him with a copy of his reprint of Ref. [64], which constitutes a more detailed
account of his talk at the Bordeaux Colloquium.

Now, the category of spectrally barrelled topological algebras admits
«colimits» : A special case of this assertion (i.e., for locally convex spect-
rally barrelled algebras) has already been given in Ref. [38; p. 157,
Lemma 4.2]. However, the general case is given by the proposition

which follows. That is, we have.

Proposition 3.2. Let (Ey).c1 be a family of spectrally barrelled algebras,
together with a family (fa)sct of algebra morphisms, with f,:E,—>E, a €I,
where E is a given algebra, such that the respective vector space L is the linear
span of U {fu (i) aEI}. Then, the algebra E endowed with the finest vector
space topology, defined by the family {(Ea s fa) s @ E I} (*-imadaretive-
limit ¢t opology on E in the terminology of Ref. [2&]), is a spectrally

barrelled topological algebra.

Proof : Let M(E) be the spectrum of E, the algebra E being topo-
logized as iu the statement above, and let B& M(E) be a bounded sub-
set. Then, each one of the sets BoJ, = {h oifigt hEB}, a €1, is a weakly
bounded subset of M(E.)*t, with a €I, and hence, by hypothesis, equi-
continuous, so that the same is concluded for the set B&E M (E) (cf. also
Ref. [24; p. 286, the remarks after Definition 2.1), and this finishes
the proof. m

On the other hand, the category of spectrally barrelled algebras admits
«topological tensor products» : Cf. Ref. [38; p. 158, Lemma 4.3, as well as
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p. 159, Corollary 4.1]). Furthermore, the completion of a given spectrally
barrelled topological algebra (:continuous multiplication) is an algebra of
the same kind (:ibid.; p. 160, Remark).

Now, we are going to consider spectrally barrelled algebras having
a prescribed set of generators. These algebras exhibit several properties
of a particular significance, as we shall see below, and will be discussed

next in the following section.

4. Spectrally barrelled algebras with a prescribed set of
topological generators. Thus, given a topological algebra E, we shall
say that a family (x«)uc1 of elements of E is (a set of topological genera-
tors, or simply) a set of generators of E, whenever the algebra E coincides
with the smallest closed subalgebra of it, containing the given family.

Now, let I be a non-empty set of indices, and let the space '
(where ¢ denotes the complexes) be given the respective cartesian pro-
duct topology. Thus, for every compact subset K of the space ', let
C(K) denote the Banach algebra of complex-valued continuous functions
on K, with respect to the «uniform norm», and let P(K) be the uniform
closure in C(K) of the algebra of polynomials on K (the polynomials consi-
dered being taken with respect to a family of indeterminates (za)ac;), SO
that P(K) is a commutative Banach algebra with an identity element;
now, one defines the polynomially convex hull of K (we denote it by ﬁ),
as the spectrum of the Banach algebra P(K), i.e., one has by definition,
the relation :

(4. 1) K : = M(P(K)).
On the other hand, one has the following relations :

(4' 2) K _(_:) M(P (K)) S GP(K) ((ZG)GGI) < @ry

where & denotes bicontinuous injections (: homeomorphisms) defined
in the first case by the obvious «evaluation map» and in the second one
by the corresponding map to the relation (4.5) in Theorem 4.1 below.
Thus, one obtains, in particular, the relation:

(4' 3) M(P(K)) = GP(K) ((Zﬂ)ael) y

within a homeomorphism, where the second member of the last relation
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defines the joint spectrum of the family (zq)ae:, When it is considered as
consisting of elements of the algebra P(K) (cf. also the following Theo-
rem 4. 1).

Now, a subset S of (! is said to be polynomially convex, whenever
for every compact KES the polynomially convex hull K of K (cf. the
rel. (4. 1) above) is contained in S or, what amounts to the same thing,
whenever one has the relation :

(4. 4) S =UK.
KCS, compact

/

Concerning the terminology applied in the foregoing, the reader
is also referred to Ref. [46], where one fiands the analogous setting for
(complex, commutative and unital) Banach algebras, and which also was,
to a great extend, a motivation to the preceding. In this concern, we
also refer the reader to [52]. Now, the following result specializes to the
analogous one, given in the latter Ref. within the Banach algebras theory
(ibid. ; p. 25, Theorem 5. 8). That is, we have:

Theorem 4.1. Let E be a topological algebra, whose spectrum is M(E),
and let A= (x4)act be a set of generators of E. Then, the following map :

(4.5) ¢: M(E) > C': f > o (f): = ( %a(f) Jac:

defines a continuous bijection of M(E) onto its range Im(¢)=cu(A) (: the
joint spectrum of the given family A). In particular, if E is a commu-
tative, complete, spectrally barrelled, locally m - convex algebra with an identity
element in such a way that the map ¢ is a homeomorphism onto its range

Im (), then the latter set is a polynomially convex subset of C'.

Proof : 'The map ¢ is obviously continuous by the definition of the
topologies in M(E) and (' Besides, it is easily seen that the same map
is one-to-one, based on the fact that E is, by hypothesis, «topologically
generated» by the given family A, and this proves the first part of the asser-
tion. On the other hand, suppose, in particular, that the algebra E satis-
fies the conditions set forth by the second part of the statement above,
and let E = lim E; be the corresponding Michael decomposition of E into

<
Banach algebras, associated to a local basis, say (Uj)ica, of E [40]. Thus,
one obtains a k-covering family of the spectrum of E, by considering the
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spectra M(E))= M(E)~U; of the Banach algebras Eix, AEA (cf., for

instance, [38; p. 156, Lemma 4.1]). Therefore (ibid.), for every compact

set K& M(E) = 0x(A) S ', there exists an index A€ A such that one
@

has the relation:
(4. 6) K © M(Ey) =2 0g, (A),

where by A is denoted the «canonical image» of the given family A in
each one of the algebras Ei, A € A. Now, the latter set in the above rel.
(4.6) is a compact, polynomially convex subset of ¢! (cf. [52; p. 25,
Theorem 5.8]). Thus, by considering the polynomially convex hull K
of K, one obtains :

R: = M(P(K) S M(P(05,(A)) == 0x, (A)

(4 7) homeo. homeo.

= M(E) § M(E) = 0x(4),

where, by definition, M(E,) is a compact subset of the spectrum of the
given algebra E, which proves the second part of the assertion (cf. also rel.
(4. 4) above), and this finishes the proof of the theorem. n

In particular, one has the following Corollary, expressing within
the present more general context, the analogous situation one has in the
special case of Banach algebras theory (cf., for instance, Ref. [52; p. 25,
Theorem 5.8]). That is, one obtains.

Corollary 4.1. Let E be a commutative, complete, spectrally barrelled,
locally m - convex algebra with an identity element and compact spectrum M(E).
Moreover, let (x4 )ag1 be a set of generators of E. Then, M (E) is homeomorphic

to a compact polynomially convex subset of C. B

As an immediate consequence of the preceding, one obtains the
following result, which is of a particular significance for the applications
considered in the sequel (cf. Section 5 below). In this respect, cf. also
Ref. [37; p. 109, Theorem 4. 1], the latter result being also a special case
of the above Theorem 4.1, and of the following corollary as well, for

algebras having compact spectra. Thus, we have:

Corollary 4.2. Let E be a commutative, complete, n-generated, spectrally

barrelled, locally m-convex algebra, having an identity element and compact
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spectrum M (E). Then, the latter space is homeomorphic to a compact, polyno-

mially convex subset of C™. N

The above corollary specializes, of course, to the well-known ana-
logous result for commutative, unital, finitely-generated Banach algebras
(cf., for instance, [22; p. 66, Theorem 3. 1.15]), as well as to a similar
one for Fréchet (locally m-convex) algebras, given by R. M. Brooks in
Ref. [10; p. 149, Theorem 2. 2]).

Scholium 4.1. In connection with the preceding Theorem 4.1, we
remark that the map ¢, given by the rel. (4.5), defines a homeomorphism
onto its range if, and only if, there exists a local basis of the given algebra E
which determines a k-covering family for the set Im(¢) = Og(A), where the
algebra E satisfies the conditions in the second half of the said theorem : ‘The
assertion can easily be concluded by applying the argumentation in the
proof of Lemma 4.1 in Ref. [37; p. 108], whose the preceding constitutes
an extended form within the class of spectrally barrelled algebras.

The preceding Scholium has a special bearing on Theorem 3.2 in
Ref. [20; p. 461]. Besides, the respective Corollary 3.3 of the same Ref.
[20] is subsummed in Corollary 4.2 given above. Furthermore, it is
easy to see that Theorems 3.4 and 3.6 (ibid.; p. 461 and p. 462) hold also
true within the present more general context.

We are now ready to deal with the applications alluded to in the
Introduction of this paper, by using the technique developed in the fore-
going. These are discussed next in the following Sections. (: These will
constitute the Sesond Part of this study, published separately).

Due to its length, the present paper will be appeared in two
Parts, according to its natural conceptual division (within the same
journal), the first one of which is included herewith. The literature
cited at the end of the paper is referred to both Parts.

Remarks (added in proof). The relation M(E) = lim M (E,), valid
=

within a homeomorphism, in Prop. 3 of Theorem 3. 3, holds actually true

without the assumption the algebra E to be complete, this being added

only in order the «Michael’s formula» to be valid, i.e. E =lim E,,
-—

Im44 1975
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within a topological algebraic isomorphism of the topological algebras
involved. In this concern, we still notice that, in view of specific appli-
cations, one can dispense with the assumption, regarding the definition
of a locally m-convex algebra, the latter to be a topological algebra;
instead, we assume that the given algebra is a topological vector space
for which there exists a local basis consisting of multiplicative (: idem-
potent) and convex (abbr. to m - convex) sets. It is then proved that such
an algebra is a topological algebra which has a local basis consisting of
m - barrels, i.e. the standard definition is fulfilled. (More details are
given in the author’s: Topological Algebras. Selected Topics (to appear)).
Finally, a step forward can be made, concerning Theorem 3.2 above, by
applying recent results of D. Rosa (:Pacific J Math. 60 (1975), 199 - 208).
Thus, Theorem 3.2 is valid, by using standard argumentation, when
considering «Ptdk algebrasn in the (weakened) sense of I). Rosa (i.e.,
B - complete algebras; ibid.). In this respect, the same theorem can also
partly be improved, as it concerns the functional representation asserted,
by considering only infra- Ptdk (or B,-complete) algebras (ibid.).

BEPIAR YIS

Eic mv nagotoav &gyaciav, 1 6moio amorekel T0 modTov uéoog widg &xte-
veotépag uekérng, didovral ta xvoudrepa pnéyor Tolde Gmotedéouata, T AvopERS-
ueva glg v yevimv dewolav wdg véag xatnyoplag tomohoyiwdv dahyefodv, tdv
«pacuarixds xvlwdgoeddvy (: spectrally barrelled, moBA. [38]). Al &v Aéyo
tomohoyixal dAyeBoar yapaxtnoilovear dro 10 yeyovog 8t xdle dolevids poayué-
vov Ymoovvolov Tod pdouaros lvar icoouvveyés (adtéd oed. 153, Definition 2.1).
*Amodexvietar Gru 1) &v Adye WBudtng tob gdonatog elvar o xat’ EEoyiv dxeivo
otougeiov, t0 6moloy xat’ odolav yonouworoteital eig Tig uéyoL ToUde Epaouoydg
v eidinwtégoy tomoloyixdv Ghyefodv, Gmwg eivar ai dhysfoar Fréchet [40]
#al 1 yevixevoic tov, ai m-xviwdgoedelg [37]. “H Sianiotwoig tob &v Ay gat-
vouévou xatd THv meonyoupévny pehétny tdv tedevtaiov dg dve dlyefodv GO-
ynoev eig tov GoLopov Tijg U0 culrtnow xatnyogiag TdV Tomohoywdy ahyePfodv.

"Idairegov évdiagégov magovordler &miong 10 yeyovog 6t 1 6ollovoa idL6-
mg tag &v A6y aryéfoas elvar xadapds «pacuatxiy (Avagegopévy el v
tomohoylav to¥ @doparog tiig Yewoovpévng aAyéBoag, 2E ol xal 1| yonowwomolon-
uévn 6oohoyia), yeyovdos to 6molov dbvarar va dewendf St weoihaufdveran eic
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t0 yvwotov modyoaupa 8eebvng, o Ymd tob Pdoov padnuarivod G. E. Silov
10 modtov eloaydév [50], dnhady, «10 xard méoov 1O Tomohoyindv @douo pidc
(romodoyixniic) aAyéBoag xadopiler v dhyeoav> (moPh. Emlong [6]). Syetndc,
aEroonueimrog vafjokev 1) damiorwoig 81 elg Bhag Tag uéyor Tolde Epaguoyds TdV
m-xvhivdooetddv dryefodv, Snwg avrar Extidevron &v [33], [34] »ai [37] (&mo-
tedoloon Eméxtaciy moomyovuéveov Egaguoydv tig Pifhoyoagpiac S dlyéBoag
Fréchet 7, yevirdrtegov, xvhivdooedelc) elvar 1) &v Adyw idi6tng tod @donarog
gxelvn, 1) 6molo yonowwomoteltar =al 1) 6mola oVtwg Eugaviletar dg yevirelbovoo
My «ysmpeToul)y  ididtntar, 1) Yewoovpévy dryeBoa va elvon xvhwvdpoediic H,
anoum yevixdrepov, m - xvhvdeoedlg (i dopunn - structural - idrng tdv dew-
oovpévov alyefodv). I'ewueroueos (dnhadn, dopmnds) yapaxrnoiouds Tijs &v Adyq
i0udrnrog Oa 7jro évdagépov va do0if &v ocuvdvaoud mede 1O Avotéow wEG-
voaupo tod Silov.

‘H &g dvw ratnyooia tdv tomohoyixdv dAyefodv meothaufdver Entong, dmog
unfjoke moomyovpévg 1) meglmtwolg S Tag m - xuhwvdooedels GAyéBoag [37],
tag évdlagpegovoag O tag Egaguoyag Tomoldoyuxas dAyéfpas Nachbin - Shirota
(woPA. Definition 2.2 tijg magovong perétng), xadmg xai Exelvag pe «ovveyi
dnewedviow Gel’ fandy (ngPh. Lemma 2.1, &g dvoréom). Mio idiartéoa Epaopoyn
tiig tedevtatag xatnyoolag aAyefodv vnfigke xal 1) loxVs &v mooxewnéve £vog
mooodtov amotehéopatog tov Ilohwvod padnuatinod W. Zelazko, AVaQpEQo-
UEVOU Elg TOV YaQAXTNQLOUOV «peyiotwy Wdewddv ne memepaopévyy cuvdidotaociy»
widg Tomuxdg m - xuetils Ghyéfoag [40], doxnds dratvmmdévrog eig To whalota tig
Vewolag TV xvhivdooeddv dhyefodv (moPA. [64] »al dvwréow Theorem 3.5).

Daoparindg xvuhivdooedels dhyefoar ne «memepaouévov aiiidog (tomohoyi-
x®V) yevvnrépwv> Exovv aitéoav onuaciav da tag Epaguoydg, &v ouvvdraoud
ue v dewolav tOV Gvalvtindv cvvaTioewv TEQLocoTEQMY Miyadindy uetaPin-
v (woPA. dvotégm Corollary 4.2). Tolro elyev 1dn moonyovuévmg Gmodery i
o tag m - wvhivdgoedele ahyéBoag [37], Enéxtaocig v moonewpéve évog makato-
téoov Gmoteréoparog dio «memeguopévog magayouévag> Ghyéfoag Fréchet [10].
Syetnddg, elvar 10 Yéua tod devtégov pégovg Tiig magovomg uerérng, 1 Aemro-
ueeng avdivoig T@v v Ady® Eaguoydv dvagéoetar i Cuotomixds dvailoid-
Tovg 10D @dopatog tomohoyur®dv dhyefodv, al 6molal év mooxewméve elval pacua-
s wvlwdgoetdeis W) dooudva watdAinka zwagdywya tobrwy, wadwg xal eig
gpaguroydg tiis dewolag (mwwdxwy Eaprwudvoy cvveyds dmo mapauéroovsn. Mele-

~ 3 ' ’ ’ ~ ; ~ A ) ~ ~
tdvran éxiong Jépata magactdoswg tomoroyikdv GAyefodv péow aAyefodv, t@V
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Smolwv T orougeia elvan ouvexeic toual xatarrirov ydpwv tomohoyx®dv Ghye-
Bodv (: sectional representations), vmd v #vvowav t@v [35], [36] (wefh.
gntong [21]).
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