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ABSTRACT

Materials with specific microstructural characteristics and composite struc-
tures are able to exhibit negative Poisson’s ratio. This result has been proved
for continuum materials by analytical methods in previous works of the first
author, among others[1]. Furthermore, it has been shown to be also valid for certain
mechanisms, composites with voids, and frameworks, and has been recently veri-
fied for micro-structures optimally designed by the homogenization approach. For
microstructures composed of beams it has been postulated that non-convex shapes
(with re-entrant corners) are responsible for this effect [2]. In this paper it is
numerically shown that mainly the shape of the re-entrant corner (non-convez,
star-shaped) microstructure does influence the apparent (phenomenological)
Poisson’s ratio. The same is valid for continua with voids, or for composites
with irregular shapes of inclusions, even if the individual constituents are
quite usual materials. Elements of the numerical homogenization theory are
reviewed and used for the numerical investigation.

1. INTRODUCTION

Composite materials present usually a certain non-homogeneous and iso-
tropic microstructue. Only on the macroscale it is possible to accept these mate-
rials as quasi-homogeneous and according to the case and isotropic. By using
the method of optimal topology design by numerical homogenization [1,2]
a choice of the appropriate quantities for the constituents of the microstru-
cture was achieved on the respective characteristic unit-cell. The origin of
this micro-macro approach can be traced back to the modelling of elactic
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framework in continuous structures [3,4]. By this procedure the overall elastic
moduli of the anisotropic structure can be evaluated through the stiffnesses
of the members composing the unit-cell walls.

Applying these ideas it is further possible to explain the appearance of
negative Poisson’s ratios and their effects on the behaviour of the struc-
ture [3-7]. It has been recently shown that, by an appropriate selection
of the anisotropic properties of the material, or the structure, and especially,
by varying its values of Poisson’s ratios, a beneficial effect on their strength
characteristics and particularly by a reduction of the stress concentration
factors due to geometric discontinuities of the structures can be achieved
[9-12]. In particular, the advantages of using materials with negative Pois-
son’s ratio have been already appreciated since they permit, among others,
a reduction of the stress concentration factors and the production of layered
composite panels and beams, which allow for smooth treatment by cold
metal forming processes [13,14].

In this paper ways for designing materials with negative Poisson’s ratios
will be indicated, based on configurations of arrays of inclusions with poly-
gonal shapes with re-entrant corners. These non-convex two-dimensional
cellular microstructures, where the inclusions are made of a material of lower
moduli than the moduli of the matrix of the structure, are convenient to create
composites with negative Poisson’s ratios of different amounts, depending
on the ratio of the moduli of the constituents of the composite, as well as on
the shape of the inclusions. It has been shown in this paper, by applying me-
thods of numerical analysis, that, while the choice of the material properties
of the individual constituents of the composite does not influence significantly
this effect, the shape of the star-shaped microinclusions is mainly responsi-
ble for this phenomenon.

2. TRUE BOUNDS OF POISSON’S RATIOS IN ANISOTROPIC BODIES

The positiveness of the stiffness C, and the compliance S, tensors in ani-
sotropic materials imposed by thermodynamic principles, based on the fact
that the elastic potential should remain always a positive quantity, and the
potitive definiteness of these two tensors for any anisotropic material implies
that the following four eigenvalues of the minimum polynomial for S to be
expressed by [15]:
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The above values for the four roots of the minimum polynomial for S are
simplified expressions for the transversely isotropic body where the 2, 3-prin-
cipal directions correspond to the transverse plane of symmetry of the mate-
rial, so that E;, =E 3 and v;5 =v,3. From the above relationships (1) and for posi-
tiveness of Ey3 and Gy one finds easily for the components of Poisson’s ra-
tios vy3 and v,;=v,3 the expressions [16,17]:
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It should be pointed out and emphasized thet positiveness of the elastic
potential is guaranteed only when both above inequalities hold, fact which
has been sometimes overlooked in the literature and has led to inaccurate
conclusions [17]. Then, for orthotropic solids the following system of relations
must hold [17]:
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For the transversely isotropic body these relations reduce to the simpler
ones:
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It can be readily derived from these relations that the inequalities (4) or
(6) are more restrictive and severe than the respective inequalities (3) or (5)
and therefore they are the relationships which should be considered for eval-
uating limits of variation of Poisson’s ratios in composites. Application of
these relationships may then protect the researcher from admitting excessive
bounds for this important mechanical property (see for example the excessive
value for ve3 =1.97 given in ref. [17] for the transverse Poisson’s ratio of some
particular composite).

For the isotropic elastic materials the bounds of Poisson’s ratio values
are reduced to the well known limits varying between -1.0 and +0.5. The
right-side limit corresponds to incompressible materials with the rubbery
materials and especially polymers approaching this limit. The negative values
for Poisson’s ratio appear in special substances and especially those presenting
weak values for the bulk modulus and strong values for their respective shear
modulus. The lower limit of the negative unit is an extreme value, which
may be achieved only in very special structures of substances. In all other
cases the possibility of the appearance of a negative Poisson’s ratio, at least

in one direction of loading, is not excluded from the theory of general aniso-
tropic elasticity. Instances of this effect will be reviewed in this section [18,19].

Thus, single crystals with a polygonal structure at the atomic level are
reported to have negative Poisson’s ratio along some directions of loading.
Such materials are reported to be the cadmium [20], the single crystal of py-
rite [21] and the lattice structured pyrolytic graphite [22]. On the other hand,
thermomechanically treated low density open-cell thermoplastic polymeric
foams are materials, which eventually exhibit negative Poisson’s ratio. It is
of interest to remark that such materi- Is are usually porous and have a spongy
nature, with a lot of voids and a complicated microstructure. From the micro-
structural picture of the latter materials, which exhibits non totally convex
cells, containing also cells with re-entrant corners, a number of micro-stru-
ctures and mechanisms have been proposed for an explanation and the study
of this effect [13, 23-25]. However, these examples are not actually materials
which can be found in normally, in applications but, as manufacturing techno-
logy and micromechanics attain a higher level of development, the possibility
of constructing materials with this microstructures as prototypes grows continu-
ously. On the other hand, it should be remarked that almost all structures
in living creatures are practically composed by a combination of such materials.
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Cellular microstructures composed of beams have been used with success
for the modelling of linear and nonlinear elastic properties of two-dimensional
and three-dimensional cellular materials or honeycombs; the results corre-
lated well with experimental measurements [3,4,7]. It should be noted that
experience gathered up-to-now indicates that all usual materials and compos-
ites with positive values for Poisson’s ratio should be formed from units con-
taining exclusively or predominantly convex cells, wheres foamy materials
with very high porosity with non-convex cells presenting re-entrant corners,
are convenient to create substances with negative Poisson’s ratio [3, 14, 23].

The importance of creating materials with negative Poisson’s ratio has
been recognized with respect to modern structural analysis applications espec-
ially in the aerospace industry. It was recognized that, these materials should
normally have a very high shear modulus relatively to their respective bulk
modulus. This is appreciated, if the material is used in a sheet or beam form,
as it is actually the case in most structural applications, where materials having
a high shear modulus than a high bulk modulus are beneficial [14]. Moreover,
the deformation patterns of elastic structures made of this kind of materials
generally differ from the ones made of classical materials (see ref. [13] for
a detailed description). This latter effect requires a new way of thought for
the design of structural elements of structures, but at the same time, opens
new possibilities for applications. For example, a sandwich panel or beam
with core made of this new material will exhibit a dome-like double curvature
on flexure, fact which allows an improved cold metal-forming treatment for
the production of shells from initially plane panels, thus reducing the stress
concentration factors which, in turn, enchance the crack and fatigue strength
of structures.

3. A NUMERICAL HOMOGENIZATION METHOD FOR ADAPTING NEGATIVE
EFFECTIVE POISSON’S RATIOS

From a series of experimental results on foams with re-entrant corner cells
(e.g.[23]) and from the relevant results by applying the numerical homoge-
nization theory (e.g. [2]), it can be shown that we may construct microstru-
ctures with an adjustable mechanical behaviour, which exhibit positive or
negative Poisson’s ratio. For the study of the overall mechanical properties
of these materials we assume that they are periodic,i.e. the same microstruc-
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tural pattern is repeated for the whole area of a structure. We assume more-
over that the overall mechanical behaviour of the material can be described
by the classical elasticity relations. In this framework the homogenization
problem is posed as follows: find the elasticity constants of the continuous model
which lead to the same mechanical behaviour as the one of the material with the
pertodic microstructure.

To this end a detailed analysis of a representative material cell is per-
formed and a best fit method is followed, as it will be shown in the numerical
examples later-on in this paper. The possibility to adjust the overall mechan-
ical properties by changing either the geometric, or the material properties
of the microstructure constitutes the inverse (optimal) design problem: find
a microstructure for which the material has a given (or optimal in some sense)
mechanical behaviour.

Let us assume a representative unit-cell of the periodic structure, which
for simplicity is considered to be two-dimensional (see Fig. 1). Let the unit
cell be orthogonal with dimensions equal to L; and L, along the two coordi-
nate axes and let it occupy the area Q with boundary I'. The boundary is com-
posed of the complementary and non-overlapping parts I';. I'y. I, and I', (i.e.
.ol vy v IMy=I\T'} » I'y=@ etc). A unit cell of the real structure
(case Il'in Fig. 1) and a unit cell with the same dimensions of the sought homo-
geneous structure (case I in Fig. 1) are considered. The cells I and II are sub-
jected to the three unit prestresses:

case (1): G= 1., Oy = O, Gg = Tga = Tog — O,
case (2): gu=i0, =1 65= T —To =10 (7)
case (3): e =0 o=00 Vel=rg, = =1

as it is shown in Fig. 1.

The solution of cell I for these load cases can be based on simple engi-
neering mechanics relations, due to the assumption that the dimensions of
the periodic cell are small with respect to the dimensions of the structure.

For the cell IT a finite-element method is employed for the solution of
the above static analysis problems. Moreover, the following periodicity re-
straints, which result from technical mechanics considerations, are taken into
account (as multipoint constraints) in the above described problems:
-For problems 1 and 2 displacements on boundaries I';, I''; along the horizon-
tal direction 1 are the same,
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Fig. 1. Elements of the numerical homogenization technique for a unit-cell. Case (I) the
homogeneous cell. case (II) the real structure cell. Problems (1) (2) and (3) indicate
loading modes of the respective cells.
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-For problems 1 and 2 displacements of boundaries Iy, I, along the vertical
direction 2 are the same, and

-For problem 3, boundaries I';. I'';. T, and Iy remain straight lines after
deformation.

The essence of the energy-based numerical homogenization method is that
the parameters of the homogeneous cell I are appropriately chosen, so that
it has the same deformation energy with the cell of the real structure (cell II),
if both are subjected to the same deformation patterns, which should respect
the periodicity assumptions, i.e. they are periodic for the whole structure.

If the parameters, which define the mechanical behaviour of the cell I
(e.g. the elasticity constants) are gathered up in the design vector @, the nume-
rical homogenization method can be described by the following identification
problem:

Find o as a solution of the optimization problem:

1(i) ()

rn, 33w €% T[ =
i=l

ad

Here Aaq is the admissible set for the material parameters of the homo-
genized cell, i runs over all independent periodic deformation patterns e(i),
which are considered, wi are appropriate weights, which tranform the multi-
objective optimization problem into a classical one, with a cost function as
in (8), superscript I or IT stands for the quantities of cell I or II respectively
and Ilix is the internal energy of the considered structure.

The identification problem (8) can be solved, either by classical numerical
optimization techiques, or by neural-network based methods, as presented
in ref. [26]. Here we use a simple procedure, which is based on the optimality
criteria method for the solution of a certain class of problems (8).This method
avoids the formulation and the solution of large scale optimization problems,
and if it can be used, it is considered to be suitable for structural analysis
applications [1].

Let us assume for simplicity here that all wi’s are equal to one. Moreover
we assume that the homogenized unit cell I obeys the classical isotropic elas-
ticity relations, i.e. we have that [17].
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The design vector @ is chosen as: @ =[oy, 2,]T = [1/E, -v/E]T.
The internal energy is expressed by dQ for all i=1, II,

1 =1,2,3, where Q is the area of the considered cell. For simplicity we assume
here that A.a=R2.

Under the above assumptions problem (8) reads:

2
(OI(I)T(a)el(l)(a) B 0Il(l)TeH(l))z +( 01(2)T(a)el(2)(a)_ oll(Z)TeH(Z)) +
min _ zl | Q[ @10
2
aeR Q i (01(3)T(a)e1(3)(a) .4 UII(S)TCH(S))

For the assumed unit stresses (7) and the elasticity relations (9) we get
for the unit cell I that:

) - Ly .

(11)
@) = 1(2)—
el @)= 020'2 @)= az 621(2) = aIOZI(Z) = al
I@)e=
&' =2(0,- 0,)0,® = 2(a- @, )
with all other components equal to zero.
Relations (11) and (7) written for the cell I are used in (10).
Moreover, the virtual work equality for the cell II reads:
' j IGT 11 :
[o" e Do =" W Var,  j=1,2,3 (12)
Q Q

for all given unit stresses of (7) (i.e. SU() =1 on I',,SU(1)=0 on T, I", etc).

Finally, the optimality conditions for (10) are written by means of (11).
«Find ay, ay, such that:
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By using (12), the area-integrals are transformed into boundary integrals.
Thus, we get the following optimality conditions:

(
5'2“ 2 ((11- az) - g"OITIIG) } dQ (14)

«Find a,, ay such that:

(
{alﬁ[z‘“?(l)é}lw a L -u® ’[}1+|k2(a W)L J‘on(s)r u<3)]2 .

(15)
13T _I(3)

(200, - 5 [ |

\ Q ) (16)
Variable a3 (the elastic modulus E) results from (14) and (15):
ll(l) [l & 112) [
a, = (A7)
L 2 I,

Variable at (the Poisson ratio v) may now be calculated either from (16),
or from the elasticity relations (11), which have been assumed to hold true.

Analogous relations can be extracted for the more general case, where
the homogeneous model I is assumed to obey the orthotropic elasticity re-
lations, or to general anisotropic elasticity relations [2].

4. THE INVERSE PROBLEM OF DEFINING A MATERIAL WITH GIVEN
HOMOGENIZED ELASTIC CONSTANTS

The aim of this chapter is to formulate and implement a procedure to
define linear elastic materials with prescribed constitutive parameters and
presenting a periodic micro-structure, such as fiber composites. Such materials
are prone to be defined for their macroscopic behaviour by effective average
elastic constants, through an analysis of the micro-structure represented by
unit representative cells. Then, the inverse homogenization problem can be
formulated analogously to the direct problem of the previous section. We
make here the same assumptions and we consider again the cells I and IT and
the unit stresses (1) —(3) of Fig. 1.
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Now the chomogeneous» cell I is given, i.e.relations (9) are valid and the
elastic constants are known and constitute the goal of the optimal design prob-
lem. On the other hand, the real cell II may now be modified by means of
a certain number of design parameters, which are summed up in the design-
vector B. For instance, either elasticity constants of various constituents in
a composite structure, or the shape of the inclusions in a reinforced composite,
or the type and the shape of the microstructure, may be considered as design
variables, by an appropriate choice of the elements of vector .

By an analogous reasoning to the one used in the previous section, the
optimal design problem reads (cf. (8)):
Find B as a solution of the optimization problem:

- I(i) " (i) .
= in in

Here Bag is the admissible set for the design variables B and all other
quantities are defined after problem (8).

As with problem (8), problem (18) can be solved by means of various
methods. A detailed presentation of the solution of this homogenization pro-
blem is not undertaken here in this paper, since the method is well established
and known. The reader may consult refs. [2], [27] and [28] among others, for

analogous recent studies.
Since in the inverse problem it is asked to construct materials with desig-

nated properties, it is expected that a number of differently composed bodies
may exhibit the same mechanical behaviour. Then, it is chosen for a practical
stand-point the goal to construct the simplest material with the given parame-
ters, thus solving an optimization problem, whose cost function must be mini-
mized. If this cost function should be the weight of the structure, then the
constraints are expressed by the constitutive parameters to be satisfied and the

design variables should define the composition and the topology of the body.
Since the composite materials are periodic structures, they are described

by a representative unit-cell, which constitutes the smallest repetitive unit
of material, and a calculation of the effective moduli of the substance can be
obtained by analyzing only the unit-cell. Considering that the typical com-
posite is a complicated microstructure, an analytic approach for the determi-
nation of the properties of the material is rather impossible, and, therefore,
a finite-element based numerical method is better suitable, due to its simplic-
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ity. Here we are using the homogenization procedure in terms of element
mutual energies, which renders the inverse problem better suited for optimi-
zation. Then, the optimization problem is formulated as a multiple load mini-
mum weight problem and solved by a modified version of the optimality
criterion method proposed in ref. [29].

Since with fiber reinforced materials we are concerned with the general
constitutive laws in two dimensional linear elasticity, we consider a case of
a particular type of microstructure consisting of a star-shaped inclusion with
re-entrant corners, as it is indicated in Fig. 2, and it is related with materials

5
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Fig. 2. A periodic fiber-reinforced composite with star-shaped encapsulated inclusions.

N
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of a specific microstructure, which can be modelled by means a truss-like cell.
The principal analogue of this example comes from a foamed porous material.
Indeed, the truss structure may be a continuum with holes, with the provi-
sion for an analytic solution of the problem that none of the holes does inter-
sect the cell boundaries. However, this constraint may be relaxed for the case
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of a solution based on numerical analysis, provided that the appropriate bound-
ary conditions of the examined cases were conveniently defined. Then, the
homogenization relationships can be solved by a finite elément approach,
for which the individual bars in the truss-like cell are considered as continuum
elements, with two modes disposing only of a certain longitudinal stiffness
and zero-shear stiffness. In this way the same software, which is used in fin-
ding the homogenized coefficients for the truss-like structure, yields also the
continuum-like material. Figure 3 presents a periodic composite material

with star-shaped inclusions convenient for developing negative Poisson’s ratio.
The described asymptotic homogenization procedure provides rigorous

convergence estimates for the displacements of the real structure and those
derived by using the homogenized coefficients. Concerning the effective mate-
rial properties, the method tallies with the approach based on energy princi-
ples that, employ average stress and strain theorems [30]. This techique pre-
sents the adventage to use effectively methods and solutions existing for trusses
and similar structures. In this method three tests of the representative unit-
cell were considered, namely the two simple tension tests along either of
the principal directions of the unit-cell, and a third one, where the unit-cell
is deformed under simple shear, as these are described in a previous section.

According to a standard homogenization procedure the displacement
fields developed on the boundaries of the unit-cell under these three modes
of loading are expanded in an asymptotic series, involving functions depending
on the global macroscopic variable and a local microscopic one. These series
are truncated to the desired order for each problem and they are used to ex-
press the global properties of the material, as indicated in the previous section,
taking also into consideration the periodic boundary conditions imposed on

the unit-cell during each simple mode of loading.
In order to explore the possibility of introducing a convenient shape of

cross-sections of the inclusions in a fiber composite, contributing to the crea-
tion of a negative value for the transverse Poisson’s ratio of the composite,
we examine the case of the truss-like structure under the form of a convex
star, created by a number of beams and rods, whose principal analogy derives
from open foam and porous materials. It is indeed anticipated that, in order
that a porous material presents negative Poisson’s ratio, its porosity should
be rather high and the material should be classed in the open-foam materials.
We start our investigation with the convex shaped-beam cell of Fig. 2.
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The microstructure of the material produced by this cell is schematically
shown in Fig. 3. By using the numerical homogenization concepts of section
four we model the unit-cell of Fig. 2 by means of two-dimensional beam finite
elements, we consider fixed-end boundary conditions (support) at point 1 and
a unit load in the horizontal direction applied at point 7. For the above-de-
scribed cell, with geometric dimensions asin Fig. 2, we assume that the beams
have a cross-section equal to unity, a moment of inertia equal to 1000, and
they are made of an elastic material with elastic modulus equal to E=1000.
For various values of the shear modulus G and for a shear factor equal to 0.3
(resp. to 0.9) the (phenomenological) elastic modulus E, and Poisson’s ratio,
v, as they are calculated by the numerical homogenization theory, are plotted
in Figs. 4a and b respectively, for low values of the shear modulus G of the
structure varying between G=100 and G=1000. For higher values of the
shear modulus G, varying between G=1000 and G=10%, the variation of E
and v is plotted in Figs. ba, b respectively.

From the above results a negative Poisson’s ratio effect is clearly demon-
strated. One should nevertheless underline here that the above parametric
investigation is extrapolated outside the range of mechanically admissible
values for the material constants, in order to give a better visualization of
the sought dependence between Poisson’s ratio and structural constants for
a given cell geometry. In fact, a value of G=333.30 corresponds to a beam
material with v=0.5, which leads to a Poisson’s ratio for the microstructure
equal to -0.2815 for a material with shear factor equal to 0.3, whereas, for
a material with shear factor equal to 0.9, the respective value for Poisson’s
ratio is equal to -0.1538 for the low range of variation of G (100 < G < 1000).
However, a value G=1000 corresponds to a beam material with v=-0.5, which
leads to a Poisson’s ratio for the microstructure equal to -0,1524 for a low
shear factor 0.3 and equal to v=-0.0120 for a high shear factor. These results
indicate that the shape and the geometry of the microstructure and not the
material constants of its elements are mainly responsible for a negative Pois-
son’s ratio.

The influence of the shape of the inclusions will be studied subsequently.
For this purpose we consider five different shapes and orientations of inclu-
sions, whose forms and orientation are indicated in Fig. 6. Indeed, from the
shape of a square cell type of Fig. 3 with four re-entrant sides, whose angles
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Fig. 3. A star-shaped two-dimensional beam-like cell with re-entrant corners simulating
the unit cell of Fig. 2. Finite element discretization and mode numbering.
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at its corners are equal to 6=36°, we create progressively the four successive
forms by increasing progressively the angles 0 to be: 6,=61°, 6.=90°, 0=
134° and 0.=180°. The microstructures of the three materials produced by
the cells a, ¢ and e respectively are schematically shown in Fig. 7. The defor-
mation modes of these three types of cells, when horizontal tensile unit-loads
are applied to the respective frames, are shown in Fig. 8. It is clearly indicated
schematically in this figure that for case (a) the Poisson’s ratio should be nega-
tive, whereas for the two other modes, either Poisson’s ratio is insignificant
(case (c)), or it takes large values (case (e)). For the beam-elements we consider
the following constants: cross-area 50, moment of interia 416.66, shear factor

0.9, E=10% G=333.30, that is a material with v=0.5.
The previously outlined numerical homogenization method is applied.

Numerical analysis and application of the homogenization method indicated
that these three types of frames exhibit Poisson’s ratics equal to ~0,2715.4+
02928 and +0.40134 respectively. Examples of the variation of the elastic
modulus, E, and the Poisson’s ratio for the type of materials with such mi-
crostructures is shown in Figs. 9 and 10 respectively, as it is found by

applying the homogenization and the numerical analysis technique.
It can be derived for the above results given in Figs. 9 and 10 that a nega-

tive Poisson’s ratio effect is clearly developing with such a type of composite,
where the inclusions have a star-like shape of their cross-sections, with sides
containing re-entrant corners. Furthermore, the same figures yield the con-
clusion that, as the ratio G/E of the material is reduced and its shear factor
is also reduced absolutely, higher negative values for the Poisson ratio may

be attained.
Then, the following conclusion may be derived from the previous results.

It can be stated that: mainly the shape and the geometry of the microstructure
and secondarily the particular mechanical properties of the composite are respon-
sible for creating composite matertals with negative values of Poisson’s ratio.

Let us now examine a particular microstructure of a fiber composite, con-
sisting of arrays of star-like inclusions with re-entrant corners and these inclu-
sions are encapsulated by layers of interfaces, as those indicated in Fig. 2,
where the interface layer is strongly exaggerated. The corresponding micro-
structure of the composite may be considered as composed from unit-cells
corresponding to the squares ABCD of Fig. 2, whose finite-element discre-
tization is shown in Fig. 11.
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Fig. 6. Parametric investigation of five types of a star-shaped two dimensional unit cell
expressed as a truss-like structure.
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For the respective isotropic material, which occupies the region Q; (ma-
trix) of the composite, we consider an elastic modulus E; =100 and Poisson’s
ratio vi=0.3. For the material of the region Q, that is the reinforcement of
the composite, we consider v2=0.30 and several values for E;, from a weak
material with E2=10 to a very strong one with E;=10% The dependence of
Poisson’s ratio of the composite from the ratio E2/E; is presented in Fig. 12,
where it is clear that for low values of the ratio Ez/E; (lower than E,/E{{(46)
the Poisson ratio of the structure remains positive and above this limit this
material parameter becomes negative.

ACKNOWLEDGMENTS

The research programme presented in this paper was supported from
the National Academy of Athens Research Fund, under the code No. 200/294.
The authors acknowledge this generous support. The numerical calculations
have been performed on a HP 755 computer at the Institute of Steel Stru-
ctures of the Aristotle University of Thessaloniki, Greece. Finally, the authors
are indebted to Mrs. Anna Zografaki for the typing and printing of the man-
uscript, as well as for the drawing of its figures.

REFERENCES

1. G.ILN. Rozvany, Structural design via optimality criteria. The Prager approach to
structural optimization. Kluwer Academic, Dordrecht, 1989.

2. O. Sigmund, Materials with prescribed constitutive parameters: an inverse homo-
genization problem. Int. Jnl. Solids and Structures, 31(17), (1994) 2313-2329.

3. A. G. Kolpakov, Determination of the average characteristics of elastic frameworks,
Prikl. Materm. Mechan., 49(6), (1985) 969-977.

4. L. J. Gibson, M. F. Ashby, F. R. S. G.S. Schajer, C.I. Robertson, The mechanics
of twodimensional cellular materials., Proc. Royal Society London, A382 (1982), 25-42.

5. K. Evans, Tensile network microstructures exhibiting negative Poisson’s ratios.,
Jnl. Phys. D: Appl. Phys. 22 (1989), 1870-1876.

6. G. W. Milton, Composite materials with Poisson’s ratio close to ~1. Jnl. Mech. Phys.
Solids, 40(5), (1992), 1105-1137.

7. L. J. Gibson, M. F. Ashby, F. R. 8., The mechanics of two-dimensional cellular
materials., Proc. Royal Society London, A382 (1982), 43-59.

8. P. 8. Theocaris, Th. P. Philippidis, Stress distribution in orthotropic plates with
coupled elastic properties. Acta Mechanica, 80(2), (1989), 95-111.



218 TIPAKTIKA THEZ AKAAHMIAL AGHNON

9. P. S. Theocaris, Failure criteria for weak-axis quasi-isotropic woven-fabric compo-
sites, Acta Mechanica, 95(1), (1992), 69-86.

10. P. S. Theocaris, The elliptic paraloid failure criterion for cellular solids and brittle
foams, Acta Mechanica, 89(2), (1991), 93-121.

11. P. S. Theocaris, Failure modes of closed cell polyurethane foams, Int. Jnl. of Fra-
cture, 4 (1992), 353-375.

12. P. S. Theocaris, The beneficial influence of matrix anisotropy in fiber composites.
Acta Mechanica, 97(3-4), (1993), 127-139.

13. R. S. Lakes, J. B. Park, E. A. Friis, Materials with negative Poisson’s ratios: De-
pendence of properties on structure, Proc. Am. Soc. of Composites. Third Tech. Conference:
Integrated Composites Technology, Technomic Publ. Co. Inc. Lancaster, Basel (1988) 527-533.

14. K. Evans, Tailoring the negative Poisson’s ratio, Chemistry and Industry. (Oct.
1990) 654-657.

15. P. 8. Theocaris, Th. P. Philippidis, Elastic eigenstates of a medium with trans-
verse isotropy, Archives of Mechanics (Archiwum Mekhanikii Stosowanej), %1, (1989)
717-724.

16. P. S. Theocaris, Th. P. Philippidis, True bounds on Poisson’s ratios for transver-
sely isotropic solids, Int. Jnl. of Strain Analysts, 27(1) (1992) 43-44.

17. R. M. Jones, Mechanics of composite materials, Scripta Book Co., Washington and
McGraw Hill Intern., 1975.

18. R. F. Almgren, An isotropic three-dimensional structure with Poisson’s ratio =
—1., Jnl. of Elasticity, 15 (1985), 427-430.

19. J. A. Rinde, Poisson’s ratio for rigid plastic foams, Jnl. of Applied Polymer Science,
14 (1970), 1913-1926.

20. Y. Li, The anisotropic behaviour of Poisson’s ratio, Young’s modulus and shear
modulus in hexagonal materials, Phys. Stat. Sol. (a), 38, 171 (1976), 171-175.

21. A, E. Love, A treatise on the mathematical theory of elasticity, Dover, N. York,
fourth edition, 1944.

22. A. M. Garber, Pyrolytic materials for thermal protection systems, Aerospace Engng.
(Jan 1963) 126-137.

23. R. Lakes, Foam structures with a negative Poisson’s ratio, Science, 235 (1987),
1038-1040.

24. B, A. Friis, R. 8. Lakes, J. B, Park, Negative Poisson’s ratio polymeric and me-
tallic foams, Jnl. of Materials Sciences, 22 (1988), 4406-4414.

25. B. D. Caddock, K. E. Evans, Microporous materials with negative Poisson’s ratios:
I Microstructure and mechanical properties, Jnl. Phys. D: Appl. Phys.23 (1989) 1877-1882.

26. P, S. Theocaris, P. D, Panagiotopoulos, Neural networks, for computing in fra-
cture mechanics. Methods and prospects of applications, Computer methods in Applied Me-
chanics and Engineering, 106 (3). (1993), 213-228.

27. 0. Sigmund, Design of material structures using topology optimization. Danish
Center for Applied Mathematics and Mechanics, Technical Univ. of Denmark, Report No.
502, June 1995.



ZYNEAPIA THEX 25 ATIPIAIOY 1996 219

28. J. M. Guedes, N. Kikuchi, Reprocessing and Postprocessing for materials based
on the homogenization method with adaptive finite element methods, Comp. Meth. Appl.
Mech. Engng., 83 (1990), 143-198.

29. M. Zhou, G. I. N. Rozvany, DCOC: an optimality criteria method for large systems
Part. I: Theory, Struct. Optimization, 5 (1), (1993), 12-25.

30. Z. Hashin, Analysis of composite materials- A Survey, Jnl. Appl. Mech., 50 (1983),
481-505.

IEPI A HY H

‘H émppon) tijc popoiis tob éykheioparog i 10 mpéonpo t0d Aéyov
Poisson o¢ ivo-mhiopéve oOvleto DIMka

Thxa pe Budlovra yopaxtnoroting pixpodouic xol odvletec xatoouevic
propady va ugavicovy dpvyTixdy Abyov Poisson, émwg #yer dmodeiybei i dvo-
Atinég pebodovg v guveyd OAuxd. To pouwvbpevo adrtd Sugaviletor ol o pyyo-
viopols, ¢ wop®dn Lhuna xal o mAatotands (Uixpo)-xaTaouevic xal Exel mEosPd-
T emPefartwbel xal ot BértioTa oyediacpéves pixpoxataoncuis pE Ty Bordea
Tic pebbdov T 6poyevomoLfocewe.

M¢ ypion v pebBodwv Tob Bedtiorov Tomoloyiol oyedaopod xal ut yefiom
Gpbunrindic duoyevomoaews, pmopet va. xabopualet ) érroyy) Tdv xaTadMhwy Toso-
TtV TAY oUeTATIXGY DAXEY xod 7 Ohxd) EAaoTinn unyavind) GUUTEPLPOps GuVHE-
TOL XaToo%EVTG ué ASTTouspd dvdhuan Tol dvTimpocwmeuTined xeAbpovg Tye. ‘H
Sadurasto adth pmopet va. yenorpomornlel ol yia Ty perérn Tiig dppavicews dovy-
Tixol Aéyov Poisson o¢ cOvleto Ghuxa xod Ty émippol) Tév Stapbpwv Tapauéronmy
oyediaopod ol cuvbétov Ohixol éml Tol Efetalopévov pouvopévou.

T puxpoxatacxevis dmotehobueves amo doxodg Eyer yiver 1) dmébeoy v u
#0pTa oynpote (ud elocpydueves yovies) Yo T EyxhwBlopata 3 Tode mbpoug Tpo-
%ohoBV 7O awvbpevo mob peretdrat. Eig Ty mwapolon dpyactu dmodemviera aptOpn-
Tixde i xopleg T oxfiua Ths (N xvpTi, dotepocidolc) wixpodopdic ué eloep-
ybueveg yovieg émnpedlel Tov govbpevoy Abyov Poisson. To adtd ioyder nal yud
mop®dn HAwa A 1 oOvheTa Hhuxd p& dxavéviota oyfuate dyxhofiopdrtoy, dudun
%o &y xoBéva cuaTaTind Toug Enpaviler Tedelwg xhacuy wnyaviel drbxpiey. Srot-
yeia gmd Ty Oswpla g dpbunTixis bpoyevomoLicews, drwg yenotpomoteitar tlg
iy dvaxotvwoy mapovaidfovrar &v suvtopta xal yenoumomotobyrar yid Ty detBun-

~ ~ 3 YA
Tuehy Sepedvnon mod Tapariferon xol Epeuvitar othy mapolon Epyacto.



