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¢Y=IKH.— Matter Condensation in Nuclei and Black Holes, by
C. Syros*. °Avexouvddn w0 1o Axadnuaixot x. K. *AleEomoviov.

In a number of recent papers Sawyer [1, 4], Canuto and Chitre [2]
and Migdal [3] have discussed the conditions and the possible forms of
the matter condensation. The discussion given by Sawyer and Scalo-
pino [5] is based on a field theoretic model for the charged pions inter-
acting with the nucleon field via a o3 coupling, while Migdal derives his
conclusions from a critical condition for the m condensation in a neu-
tron gas. Since, as Sawyer pointed out, a strong assumption was made
by Migdal [3] concerning the Fermi energy and the chemical potential
of the pion, and since the proper polarization in the propagator depends
on the assumptions made, it appears worth examining the condensation
problem from a quite different point of view.

The present discussion will be concerned with the condensation of
particles having integral or half-integral spin and any mass. As a check
of the validity of our conclusions the limiting cases of the Bose-Einstein
and the Fermi-Dirac distributions will be derived from the non-equili-
brium distributions given here. We shall take the point of view of sta-
tistical mechanics and we shall consider the N-particle Liouville equation
(N < ) in which the particles interact via spin-dependent but other-
wise constant forces.

Two systems of particular interest will be considered here: stati-
stical properties of the atomic nucleus (finite density) and the conditions
under which black holes (infinite density) may be formed as a result of
the Einstein condensation.

In doing so we assumed that the system is contained in a space
region, R3¥, of finite volume, V®¥. The nuclear forces acting on each
particle is given by

F® = a® 4 b (g,), (1)

where a™ is the spin-independent force and b® (o,) is any vector
dependent only on the spin.

* K. =YPOY, Svpunduvwoig tijg OAng elg mupfivag xal pelavéig émde.
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On the complement, R}, of the 3N-dimensional co-ordinate space,
RN, the forces are assumed to vanish identically.

If {p(“), q™ |n =1, 2, ...N}, with p™ € P3N and g™ € R3Y, are
the linear momenta and the co-ordinates respectively, where P®N is the
3N-dimensional momentum space, then the Liouville equation, gf=0,
reads explicitly

{o+ 3 (B 7 4 Fo . ¥} =0 @

everywhere on PN ® R¥¥. Similarly we have

B+ 3 B Y] fo = 0 (3)

everywhere on P ® RN (R = R |J RV,

In both Egs. (2) and (3) vy = Ogqwm and V'™ = 0pm) -

It is found that an appropriate form for the distribution function
satisfying Eq. (2) is given by

fi= N-exp(—s;); on R, (1=1,2, 3) (4)

where N is a normalisation constant and s;=s; (p, ... p™;q®, ... q™;t).
In particular we have the forms [6]

=3[0 e t/g— i FO g0+ 1/2 - (00 — va FOPI 49, (5)

=3 (v +0)

S5= 3 i [1/2 (p@)2 — F® . q®] + 9, (6)
n=1
; |
=+
S5 = 3 nw PO - B0 A g 4 9, (1)
n=1
N
=3 (v +9a),

n

Il

1

N
where o, Wn, Va, %*a are given parameters and 5: S & is the total
n=1

energy of the nucleus. ¥ is a phase of Eq.(4) and will be deter-
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mined presently. Concerning the distribution function on Rf’,N we can
either assume that f=0, but in a more physical way we find from
Eq. (3) the distribution
fo = No - exp (—r;); on Ry, (8)
where
r; =1 (P, ... p™; q@, ... q™; t); ™ ERY. (9)

We give two appropriaté forms for rj:

N
=1/ 3 (et — B®. q®) 49, (10)

n=1

rg = AaJn.q™ A p® 4 B (10y

where Jy is the total spin and the total energy of the nucleus & is con-
served, i.e., L &E=0. {1, }are parameters.

Clearly we have on the boundary of R{" for the distributions f; and
f, with respective arguments s; and r; the compatibility relations

P . g =, Qh—n/ 2(p™)*; qf» € S (11)

and

P = —py L PO, (12)

where S*™ is the boundary of R¥.

Eq. (12) tells us that due to the absence of forces on R3Y the linear
moments of the nucleons must be constant. On the other hand Eq. (11)
implies that the nucleus has not the same boundary surface for two
nucleons with different momenta (energies). The conditions given by
Egs. (11-12) imply the continuity of probability and of current on the
boundary S®N of the system. It is important for the existence of the nor-
malisation integrals that s; and r; violate the causality principle at
most on a subset of R® with finite measure. This requirement is
satisfied, for example, if (j=1) |q™|.cosw, < [p™]|.t/2m, where
O = {angle of (p™, q("))}, and m is the mass of the corresponding par-
ticle. Similar conclusions can be seen to be true also for other values of j.

Next it is observed that for the above used boundary conditions
to be satisfied o must be equal to —1. If however the boundary condi-
tion f=0 is applied on S®F, then o may take an imaginary value. In
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this case the requirement of positivity for the distribution function
implies that "the product &.t occuring in s, takes values according to

h s : ; : :
e.t=2n om A, where A is any integer. From this requirement t he He i-

seberg uncertainty principle follows. Thus it is
shown that, if Ae and At are non vanishing variations of € and t, then
the relations

h h m.n
Ae . At = 2n2—n[1-k-m-n] and As. At = 2n2—n—k——
are necessary and sufficient for the distribution function to be positive.
Both of them imply the inequality |Ae. At| > 2=n 2%( y

We turn now our attention to the phase 4. To show its physical
significance we calculate the conditional probability for a nucleon to be
in any state belonging to a given set, while the entire nucleus is in a state
belonging to another set of states. This probability is given by

O~ (3 exp(—s)) (2 chexp(—m-@i+5)), 03)
all phases m=1
where M is a positive integer (M < ®).
We next parametrize 4, in the form &, = 1. <+ 1 @» and require that
Cm = exp(m - ya).

Summing up the series in Eq. (13) and normalizing appropriatetly

we get the new distribution function

f =N - fexp (1) — exp (—ig,)}, (14)
here it has been assumed that M = o and the normalisation constant
is given by

N = fn’dap‘“) d"q‘“’( i e‘sj). (15)
all phases

The «’» in the integral of Eq. (15) excepts from the integration the
co-ordinates of the n-th particle. Eq. (14) gives the distribution function
for a nucleon in the nucleus of which the energy has no upper bound.
In order that f; as given by Eq. (14) be real, ¢, can only take values
according to the equation ¢, = 2wu,, where
_16,1,...,0t (16a)
1172 872, ... (16b)

Un
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In the first case, (16a), f; represents a generalized Bose - Einstein
distribution function, while in the case (16b) it represents a generalized
Fermi-Dirac distribution function. We infer, therefore, that u, = o, and
the phase ¥ is straightforwardly related to the
particle spin. It is observed in passing that the Maxwell - Boltz-
mann distribution is also obtained from Eq. (14) if it is assumed that the
spin of the particles is purely imaginary (u, = —i).

The non-reduced N-particle distribution is, for systems with energy
not bounded from above, given by

fi(p(]), e e p(N); q(l)) e q(N); t) = ﬁw : {eSj = (—)2JN}_11 (17)

where Jx is the total spin of the system and once more M =0,

We wish next to give the distribution function for the more rea-
listic case in which the energy of the system is bounded from above
by E. By appropriatetly accounting for this condition we obtain the
distribution function

l _— (_)Z.M.]N " e—(M—l).Sj

. (p® ™). g ™. t) = Ng -
flE(ply--~pthly"'qN)t) Nh esj——(—)2JN ) (18)
where e CE and M takes values as follows:
{ Nz Bosons
M= .
Nk ; Fermions.
In Eq. (18) we have, since the nucleons have spin %, the equality
even; if N is even
2n = ' 19
L {odd . if N is odd. e

Consequently, the nucleus behaves as a Fermion
if A (A=N) is odd and as a Boson 1if A is even.
In this statement which follows directly from Eq. (18) one recognizes
the main rule of the nuclear shell model.

It is interesting to note that while Eq. (17) exhibits the Einstein
condensation at s; = 0, this is not so in Eq. (18) which for s; =
gives (M < ):

M —1; Bosons
£(0,...0;0,...0;0)=N(Jx){[1; M=o0dd
{0; M = even

20)

} ; Fermions
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It follows therefore, that for bound systems with
finite number of particles and with bounded
energies (M < ) there is no Einstein conden-
sation no matter whether the system as a whole
is a Boson or a Fermion.

Due to the fact that s; is not only energy-dependent as in the ori-
ginal Bose- Einstein distribution function, but also space-and time -
dependent, the condensation, when it occurs, is not only in the momentum
space, but also in the co-ordinate space and in the time. This fact may
give some hint regarding the existence of black holes. In the
framework of the present theory with constant forces — no matter how
strong they are — no black holes can be formed, if the energies of the
particles are bounded from above. Consequently, black holes must exist
according to Eq. (17) for s;=0, only if infinite quantities of energy are
available in the universe, and only if the elementary particles are exclu-
sively Bosons. It may, therefore, be concluded that black holes
are formed via some process transforming the
nucleons into Bosons (gravitons) and they re-
quire an infinite amount of energy.

Finally, it is pointed out that a relationship exists between the Ein-
stein condensation and the causality principle. It follows from Eq. ()
and Eq. (17) that the Einstein condensation takes place at the point
{q’(“’ =0, p@=vy, . F® n=1,2 ... N} at time t= 0. At a different
point {q”‘“’, pP’™®|n=12,... N} the condensation takes place after
a time At. The sign of this time depends on the relative directions of
the forces F(™ and the corresponding spatial displacements q’’®™. These
displacements must have finite values, if the moments of the correspond-
ing particles take finite values. The signs of the time, At, correspond
to the advanced and to the retarded solutions of the Liouville equation.

HEPIAHYIZ

To moofinua tig cvumvrvdoewg tig UAng Siepevvdtar Gmo T Améewg
g otatiotikiig unyaviniig. Bose - Einstein xai Fermi - Dirac xatavopal £0oé-
dInoav meoryodpovoar cvotiinata N-copatiov gig xatdotacty ni) icopoomicg.

Deoudvia glg ouvdedepuévny vaTdoTaGLY CUUTURVOTVTAL UETH TETEQUOUEVTG
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TURVOTNTOG %Ol GUUTEQLRPEQOVTUL (G TLENVLXY UAN meoiyoagopévn Vo tod povreé-
Aov t@v @rowwv. Mmoldévia cvpmuxvoivral gig v &véoyelay, elg ydoov #al y06-
vov peta amelgov murvétnrog uévov, Grav vmdoyy Sradéoipog dmelgog moodTng -
3 ¥ c \ 3 A ’ \ ~ c ’

gvepyslag. Al pelaval dmal dvvavror va dewondolv dg cvumvxvouata youfito-

viov xata Einstein.

SUMMARY

The problem of the matter condensation is discussed from the sta-
tistical mechanics point of view. From the N-particle Liouville equation
non-equilibrium Bose-Einstein and Fermi-Dirac distributions are obtain-
ed. Fermions condense, if they are bound, to finite densities and behave
according to the nuclear matter described by the shell model. Bosons
condense in energy, space and time to give infinite densities only if infi-
nite amounts of energy are available. Black holes may be viewed as
Einstein condensates of gravitons.
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X

’Axokovdwg, Aafov tov Adyov 6 Axadnuairog x. K. AAeEémovrog,
elme o £ENg :

Kota ta tedevtaia € mohvg Adyog yiverar uetatv t@v *Actoovéuwv xal
t®v Kooporéyowv megl tdv pehavdv dndv eig TOv noouxov ymeov 10D diactiuarocg.

*And @uowriic mhevpds medxettal meQl Gvrixelwévoy odd ueydAng wdlng
CUYXEVIQWUEVNS Elg mEAXTIX®G TOAY wngov dyxov. "Eav 1 UAn 1oV dotonod do-
oTHOTOg ToEEVETAL TEOG MeydAag muxvétntag, téTe 1) mekavy om Yo meémer v
amotehf] plav ano tag tedevraiag Paduidag tiig 8Eeitews Tiig UAng.

Al pehaval dmai Exovv v WiétnTo vi dmogeogolv Aowg macay QTEL-
vilv axtiva diegyouévny O avtd@v, &€ ol xal mapéyetar 1 dvvarding moromor-

oewg Tiig Umdokedg Ttov.
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‘H peydhn xooporoywnt) adtdv onuacia Eyxeiral elg 10 Gt 8xt0g TV QOTOC
Gwogeoolv xai mdv VAxdv cwpdriov, elosoyducvov elg 10 mediov EAEewg adTdVv.
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udtov grotehovuévmv Gmo mord cwudtia, morkag 8¢ 2oyaciag adrod elixa v
TV va avaxowvaow eig Ty CAxadnuiav "Adnvadv. Eic mv nagoloav oyasiav
3 -~ \ b ) ’ c € ~ 3 ’ 3 \ ’ ~ 3 ’
Goyoheltar ue Gvopoadriog, al 6molar dugaviCovrar sic tag Aoei tdv Elodoswy
g yevudls dewolag tig oyetixétntog, Gtov avtn Epaoudletar eig tag upela-
vag Omdg.
[Moogavag medxertar mepl ovoriuatog 8x peydrov doiduod cwpatiov, pn
[ £ 3 3 ’ 3 \ & ’ ~ ’ A T ’ e
evotoxopuévov év toopgontie, GAAG 1 @ioig TV cwuatiov d&v eivar yvoory. ‘O
%. 20gog puekerd dvo Wd®dv copdtia, copdra pe idlav megioTooplv — spin @g
Aéyovrar — xai copdtia dvev idilag meoiotoopiis. Eic v modmyv meolnrwowy 1
uekétn xatariyer elg ovsooudropn muxvétnrog Tong mog Ty murvéTnTae Tod Gro-
uxod muijvog, &vd eig v devtépav meoimtwoy dider 10 meolegyov dmorédeoua

Otu 1) teduen) poopny Yo Exel dmepov murvoTNTA.



