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MAOHMATIKA . — Density discontinuities and local energy decay in
acoustic wave propagation, by George Dassios*. ’Avexowvarih

U0 100 TAnadnuairot x. @. Baoikelov.

¥. ENPR O DUETLHON

The energy of an evolving physical system is a positive functional
that depends on the state of the system at each moment. If the system
is conservative then the energy functional is independent of time and is
therefore a functional defined on the space of all permissible initial sta-
tes, represented by the elements of an appropriate function space.

In what follows we will confine ourselves to physical systems that
are governed by the scalar wave equation.

It is well known that, no matter what the number of dimensions
is, the energy contained in a sphere of some fixed radius (the local
energy) decays to zero as the time tends to infinity, as long as the ini-
tial energy is finite and the system is conservative. In Euclidean spaces
with odd number of dimensions Huygen’s principle assures that if the
support of the initial disturbance is compact then the local energy beco-
mes zero in finite time.

A lot of interest is concentrated on the way the solutions evolve in
time in the case of unbounded domains with finite or infinite bounda-
ries. T'hese problems, where the solutions are prescribed on certain
boundaries, form a huge area of research known as Scattering Theory.
Results on local energy decay for scattering theory problems have been
obtain by Morawetz [6,7,8,9], Lax and Phillips [2,3,4], Strauss [12,13],
Ralston [10], Wilcox [14] and others. The standard method in getting
decay theorems is the a, b, c-method due to Friedrich [1] where the
equation is multiplied by a first degree differential form of the solution
and then integrated over an appropriate space-time domain. Then the
divergence theorem allows the application of the prescribed boundary

conditions.
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In this paper we are concerned with the problem of energy decay
for the scalar wave equation exterior to a finite region B bounded by a
smooth surface 0B. The boundary conditions are such that the field
penetrates the region B which forms a discontinuity of the medium of
propagation. In Acoustic terminology the solution represents the excess
pressure field. The region B forms a disturbance in the medium char-
acterized by different values of mass density and compressibility
(inverse bulk modulus of elasticity) from those of the surrounding
medium. It is proved that the energy of the system is conserved when
the elastic properties of the two media are the same and they only
differ in their mass densities. Using a modified version of the multiplier
that comes from the Kelvin transformation we were able to show that
under certain conditions on the physical and geometrical characteristics
of the scatterer the local energy of the system decays to zero as time
tends to infinity.

2. CONSERVATION OF ENERGY

Consider the space R® and the domain (open and connected set)
B c R3 Assume that the domain B is finite and that its boundary 0B
is a C! closed surface. We will refer to B as the «body» or the «scatterer»
and to 0B as its surface. Let u(X,t) be a scalar function of class C?
defined on R®X [0, oo ]. In Acoustic terminology u(X,t) will represent
the excess pressure field evaluated at the space point x and the time
moment t. Let o,(0_) and My (M-) be the values of the mass density
and the bulk modulus of elasticity in the exterior space (lﬁ?)C (interior
space B), where B indicates the topological closure of the scattering
region B.

The field u has to satisfy the following initial-boundary value
problem (I.B.V.P.) [5]

ub — ci Aut =0, x€(B), t>0 (1)
ug —c* Au” =0, x€EB, t>0 (2)
ut = u-, X € 0B, =0 (3)
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8nu+=%5nu‘, XEOB, t>0 (4)
ut(x,0) = f(x), =x€R? (5)
u (x,0) = g(x), xER? (6)

where the superscript + (—) denotes the field u exterior (interior) to the
scatterer, the subscript t denotes partial differentiation with respect to
time, 0, denotes interior normal derivative on the surface 0B, A denotes
the Laplace’s operator in R?® and f, g are the Cauchy data which are
assumed to be in the class C{°(BU B°), i.e. infinitely differentiable func-
tions with compact support. The problem has four physical parameters
(the value of 0., 0_, M4, M) which are related by the formula [11]
c;: _ M. O ) (7

e M- o,
It is easy to see from (4) and (7) that one can only consider the two

04

physical parameters — apd , i.e. the ratios of the two bulk mo-

M-
dulei of elasticity and the two mass densities. T'he two phase velocities
c+ are given by [11]

M

- (8)

2
St =

It is well known that the above formulated problem is well-posed
and that its solution is a smooth function. If one allows the Cauchy data
to be functions in the Sobolev space W"?= H'!' with the energy norm

lu(®)lt = E() = ;f(lu712+cilvu'l2)dx+
B
+;f(|ur[2+ca|Vu+|2)dx (9)
BC

then it can be showed (using the density of C° in H') that the problem
remains well-posed. The integration in (9) is taken over R®—{8B} but
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this is equivalent to integration over the full space R3, since the Lebes-
que measure of 0B is zero.

The norm (9) gives the energy E(t) of the acoustical disturbance
at time t.

We are now in a position to prove the following theorem concern-
ing the conservation of energy for such a system.

Theorem 1: Suppose that u is a solution of the I.B.V.P.
(1)-(6). If My =M_ then the energy E(t), given by (9) is a constant
independent of time. In other words if the exterior and interior media
have the some elastic properties then the energy is conserved.

Proof: The proof is based on the well know identity
2 = 2 0 1 2 2 2
(0 — c*Aw)u = V- [~ ctuvu] + 5 | 5 (ui* + ¢ 1val?)| (10)

which is obtained by multiplying the wave equation by u.

Since u is a solution of the wave equation, (10) becomes

1 2
(V, 94) - (~c2utVu, 95 |uel® 4 73 |V11|2) =0 (11)

where (v, ¢,) stands for the feur dimensional (space-time) gradient.
Integrating (11) over the space-time region B¢ X [0,t] and using

the divergence theorem one obtains

1 s
f(—ci- uf yut, o lug® 4+ ?+ |V11+|2> - (nx, n)ds = 0 (12)
S+
where ST = (B X {0}) U (8B x[0,t]) U (B X {t}) and (n., ny) is the
inward (to the body) unit normal.

A similar integration over B X [0, t] gives
e IO c? = :
f(—C*"_ut vuT, o lu P4 5 v |2> +(—nx,n)ds =0 (13)
é-
where S™=(BXx{0}) U (9B x [0,t]) U (BXx{t}).
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On the different part of ST and S~ the unit normal becomes

©,—1), on (Bx{0})u (B°x{o0})
(nx, n) = {(nx, 0), on éB X [0,t] (14)
©, 1), on (Bx{t}) U (B x{t})

The sum of (12) and (13) gives

— & [t i) ae— ) [Gup 4o )] ax o+
B Bce

1 = — 1
+§f(lut ez va )| dx + 5 f(lu:r|2+c1 yatf?)| ax —
B Be
— f (cﬁL ut yut—c2 uf yu~) - n.ds = 0. (15)
0B x|[0,t]
Using the boundary conditions (3), (4) and the expression (9) for
the energy omne can rewrite (15) as

—E()+ E(t) — f (ci Qi—cg_)ut—é,,u“ds=0 (16)
0B x[0, t] e

and since M4 = M_ the surface integral bocomes zero.
Therefore for each t >0 we obtain

E@® =B = § [ (el + cIvit)dx 1
Rs

which shows that the energy is a constant independent of time. This
completes the proof of Theorem 1.

In what follows it is assumed that the elastic properties of the
regions B and B¢ are identical and therefore the energy is conserved.

3. LOCAL ENERGY DECAY

Our main result in this section is Theomem 2 which asserts that
under certain conditions the energy inside a fixed sphere becays at
least as fast as t—2 when t—> +0.
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In order to free the proof from computations and lengthy argu-
ments we split it into a set of I.emmas.

It is well known that the Laplace’ operator is invariant under the
conformal group on R", the group of transformations on R" which pre-
serves angles. The conformal group of R" consists of four types of trans-
formations : translations, rotations, dilations and inversions. Since trere
are 4 independent translations, 6 rotations, 1 dilation and 4 inversions
in R4 the dimension of the conformal group in R* is 15. Therefore the

Kelvin inversion

X . t

) X=F e ‘SF-ow TE-m (18)
preserves the 4-dimensional Laplace’s operator
02 0?2 02 02
ox? + ox? + axt + 0 (ict)? (19)

which coinsides with the D’Alemberts operator []. Therefore the wave
equation is invariant under the transformation (18), i.e. if u is a solu-
tion of the wave equation in the (X,t)-space then @ (as it is given by
(18)) is a solution of the have equation in the inverted (x, f)-space.

The Kelvin inversion (18) gives rise to the multiplier
(r? 4+ c%t?) ue -+ 2c%tru, + 2ctu (20)

which is obtained by inverting the basic energy multiplier u;.

With this motivation in mind one has the following.

LLemma 1: For any smooth function u the following identity
holds

(e —c?Au) [(£2 4 2t u, + 2 tru, 4+ 2c%tu] = v- Y + 0. X (21)
where
Y = —c%tuf X — 2t tru, vu + ot |yul?x —

— (24 c?t?) iy yu — 2¢t tu yu —

— :—: [te2u® + (12 4 2t} uu] x (22)
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X = B¥ora,u 4 % (e + c?t?) (ud 4 c2|yuld)+
c? u?
+ 2c%tuu, + = (r2 4+ c%t? (ruu,—{—Q). (23)

Proof: The proof is a tedious calculation based on standard
differential vector identities and the commutation law

1
(vu)e — (Vur) = % ur — TVu . (24)

Lemma 2: Let Yt and Y be as in (22) when ut, c4 and
u , c_ are used, respectively.

If ut, u= satisfy the boundary conditions (3), (4) on 0B and the
matrix

[An A Ay 0]
A12 A22 A24 0
A=|op 0 0 Aw O (25)
A14 A24 A34 A44 0
| 0 0 0 0 Ags )

where the entries Aj; are given by (34)-(41), is positive semidefinite, then
n- (YT —¥Y7)>o0. (26)

Proof: The boundary conditions on 0B assume continuity of the
field and discontinuity of the normal derivative. Therefore the tan-
gential derivatives of the field on 0B are continuous and the same is
true for the time derivative. For the gradient field one has

yut = yu~ 41 (2* = 1> Ouu . (27)

Hence

=ur—+(§-ﬁ)(9+——1>6nud. (28)
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Similarly

lvut]? = (vut) . (yut) =
[ (2 )] 32 )] -

= !Vu'12+2< z* ~ 1) (dnu™)* + (—2—* - 1)2(0nu_)2 =

= lya ]2 4 (Qi -1> (dnu™ ). (29)

0
The relations (3), (4), (27), (28), (29), and

uf = ug (30)

connect the values of the fields ut, u~ and their derivatives on the
scatterer’s surface. Using these relations in (22) we obtain

B (Y —Y7) = —(ch—c) © (R-X) () —
i aay T
—let =)ty —c)e] @ o u —
— e? (& — )t w, —c" (e —c2)t?us us +
+ (¢4 —c*)tr(n- X) [vu > — 22 (c% —c? ) tru; up —

— (¢ —c) tr(n - X) () — (c2 —ct)ttr (B - X) (ur)? (31)

where all the subscripts indicate differentiation. The relation (31) is a
quadratic form in the vector variable

v=(u,u,u, u,, |vu|) (32)
1. €;
n. (Yr—Y¥)=v.A.v (33)
where
t
Ay =a " (Ci—c"_) (34)
A22 = atr (Cﬁ_ == Cil_) (35)

Ay = atr(c] —ci) (36)
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A55 = ——Ottl' (Ci—ci) (37)
1
Ao = o5 [(e] —c)r® 4 el —et)tf] (38)
Ay = —tc? (e —ct) (39)
p &
g = —t* = (e —c?) (40)
Agg = —trc? (c2 —c?) (41)

Since A is a positive semidefinite matrix we obtain the inequality (26)
and the Lemma is proved.

The matrix A is independent of the particular solution u. The
positive definiteness of A provides a condition connecting the physical
(through c4, c_) properties of the media to the geometry (through «)
of the scattering region.

Lemma 3: Each smooth solution of the I.B.V.P. (1)-(6)
satisfy the inequality

f xtax f X dx < f XTdax 4+ f X dx (43)
Bex{t} Bx{t} Bex {0} Bx{o}
where X+ (X7) is given by (23) where ut, ¢y (u™, c_) are used in place

of u, ¢, respectively.

Proof: Since ut satisfies equation (1) in B¢ the identity (21) gives
(v, ) - (YF, X") =0 (44)
Similarly in B we have

(v, - (¥, X7) =0 (45)

Integrating (44) over the four-dimensional region swept out by B°
as time varies from O to t and applying the divergence theorem one
obtains

[ xtax— [ xtax+ [ ¥t nds=o0 (46)
Bx{t} B x {0} 0B x [0, t]
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A similar integration of (45) over the space-time cylindrical section
B X10,t] gives

[ xax— [ xax— [ Y adx+2ectu (0,t)=0 (47)
Bx{t} Bx{o} OB % [0, t]
where the last term in (47) is due to the integrable singularity r—* that
is contained in the expression (23) for X™.
Adding up (46) and (47), using the result (26) of Lemma 2 and drop-
ping the positive term 2nt*ct! u (0,t) we obtain the inequality (43).
This completes the proof of the Lemma.

LLemma 4:
X>0 (48)

Proof: We observe that the expression (23) can be put into the

following form

X = S (et (yul —u) +
+ & erene emt L w4+ et o — Liew| ] w0

which is nonenegative since the magnitude of the radial derivative u
is always less or equal to the magnitude to the gradient yu. This com-
plete the proof of Lemma 4.

Lemma 5: If ul is a solution of the I.B.V.P. (1)-(6) then the
(i) the solution u™ is unique
(ii) there are positive constants M;, M, such that

B[ (ut)dx < M, (50)

Bf(u— Pdx < M, (51)

Proof: (i) If uf, ug are two solutions of (1)-(6) then the func-
tion u’ = u;+~u;@-F will satisfy equations (1)-(4) with Cauchy data identi-
cal zero. Then by (17)

Et) =E©0) =0, t>0 (52)
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which imply that all partial derivatives of u' are zero. This is true
only when u' is constant for t >0, x€R?® Finally the initial con-
ditions give uX=0 and the uniqueness result follows.

(ii) Suppose that o' is the solution of (1)-(4) with the Cauchy data
o (x,0) = h' (%) (53)
o (x,0) = u(x,0) = {(=) (54)

where h®(x) is a function that satisfies the following eqnations

c2Ah (X) = g (x) , x € R? (55)
' =h (%), X€E OB (56)
daht(x)= °* 6.h (x), xEOB (57)

The function m:r—u will then satisfy equations (1)-(4) and the
initial conditions

(wg—u)|=f—f=0 (58)
t=0
((Ot‘—u)t‘ =c?Aw|—g=c?Ah—g=g—g=0 (59)
t=0 t=0
By part (1) we obtain
W =u (60)

Finally we have
Jwrpa + Jwrd = [opras + Jorax<
Be B Be B
< Juorl+ ¢ ot dx + J(orle + et Ivo e <2EQ) (61

and since the two integrals in the firs part of (61) are nonenegative we
obtain the bounds (50) and (51).

Lemma 6: If uis a solution of the [.B.V.P. (1)- (6) then

fo+du +fo*dx < *E(0) 4+ M (o) (62)
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where X, X~ are as in Lemma 3, E (0) is given by (9), o is the radius
of a sphere that contains the support of the Cauchy data f, g and M is
a constant that depends on g.

Proof: After some calculations we obtain

fX+dx +fX‘dx =
B

Be

= %—f[rz(luj’lz—}—ci_wuﬂz) + ¢ ((utP 4 2rutur) ] dx +
Be

+%I[r2(|u{'lz+c2 lva ) + ¢ ((u )2+ 2ru u, )] dx <
B

<%2 {f(luf|2+ c? [yut[?) dx +f(|u712+ c? |yu Iz)dx] 4
Be B

€

+ 5 f [(1L4 1) (@ 4 r (2] ax +
Be

+5 [T+ @ r e (] ax (63)
B

where the inequality is based on the fact that u and all its derivatives
are zero outside the sphrere of radius ¢ as well as the trivial inequality

2af < a2+ B2 (64)

By Lemma 5 we have

2

C?

T T @+ e ] ax+
Be
g %2‘ [+ 1) @) e (] ax < Cgi(l +@)f(u+)2dx %
B Pl
- C; (1+@)f(u‘)2dx+ol«:(0)<

B

C2

< S M 4 S (o) My + 0 B(0) = M (o) (65)
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Hence

IJ:X+ . +BfX‘dx < PE0) + M(0) (66)

and this comletes the proof of Lemma 6.
Lemma 7: If t> 4Cr then

e+ w4+ S5y (“2 x><x (67)

where X is given by (28) or (49).

Proof: The inequality t > }g implies that

¥ <y (69)

It is also true that

c“ t2

<t t2 < (r+ et)? (69)

Using (68) and (69) in (49) one obtains
ctit?

X> o (var—u?) 4 :2[ u)e -+ 2“]:

242
— %;tf [r2c?|yul? + r2 u? 4 c?u® 4 2c2ruu, ) (70)
Using the vector identity
2 2
V. ( u_x) = ¥ (11)

12 £

n (70) we obtain (67). The proof of L.emma 7 is then completed.
Theorem 2: If uis the solution of the I.B.V.P. (1)-(6) and

a(ch —c') <O then
Eo(t) = O(t), t->+oo (12)

where E,(t) denotes the energy in the interior of a sphere of radius o,
at time t.
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Proof: By Lemma 4 we obtain

Sxtax + [xax > [ x*ax + [ xdx (73)
Be B ;’::1533 B

where we have assumed that the scatterer B is inside the sphere

or radius o.

By LLemmas 7 and 6 we have that

2 12
eyt
4

2 42
jalluﬂZ%—CiIVu+F]dx-+£iE jﬁfutw—kcﬂlvuﬁldx-+
B

x<e
X € Be

SWAR(COLEE

x<e
X € Be

+ 58 [0 (2 )2) ax < B+ M0 (14

r
x<e
X € Be

Setting
¢ = min{cy, ¢ _} (75)

and using the divergence theorem in the third and fourth integrals we

obtain
42 & u? ~
ot 5 (e o) [ e yas +
oB
At [ (utp
+ 55 [ s <m0+ Mo (10
Ixi=e¢

By our hypotheses both integrals are nonenegative and therefore

342
Gyt

%) Felt) < 0*E (0) + M(o) (1)

which is equivalent to
Eo(t) = O(t9), t—> o (78)

This completes the proof of Theorem 2.
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NEPIAHVYIZ

‘H 2oyoocia adth) dvagéoeton othv #vepyelanwt OULUTEQL(POQE TAOV Aloewv
tiic Buduwtiic ®upatixilc éEodoemg otov toididotaro Edxheideio ydoo. To puotxd
TEETUTO WOV GVTLoTOLYKEL o abTy v meplimtwoyn elvar 1) dddoon GxovotindV
wvpdrov. ‘O ydooc draddoews Eupaviler wic dovvéyela otigc @uoirég tov idLoTY-
Tec OV Gvagéoetar oty murvétnta udlog xal ) cvpmestéinta (GviicTeopo
100 paxpooxominod péroov ghactindintac). ‘H douvvéyeia avtn meguopiletal yew-
ueTOKd ot Evo oayuévo vmocuvoho ue Aeto oivogo. ‘H diatagayl adti péoa
ot0 @00 dtaddoewg Aeitovoyel oav diamegatog oxedaotig. "Av dvriotouyloovue
10 yoauuwomomuévo wedio vmeomioewg oty Alom téte ol xatdAAnkeg cuvogia-
xtc ouvOfixee amaitolv T ouvéyela tob mediov Umegmiéoewg ral TNV Govvéxela
(u¢ memegaouévo otaded midnua) tod medlov tayvrirov mob elvar dvdloyo tiig
amoxhioemg tob mediov vmeomiéoewg. 210 Oedonua 1 dmodeiwvietar dru dv 1)
dovvéyela oto Ao Thg daddoemg Opeidetar pévo of dlagogd mTurvOTHTOV ol
Fyu otic ghaotingg WdTTEG TOV Vo VAV, TdTE T OAinn Evépyela drarmeeitat
(ouvtnontxd ovotnua), &’ Goov elvar doywda memegaouévn. 210 Oswonua 2
Hetd Gmo uie aAnlovyio 7 Aupdtov, drodewvistar 8t dv ta doya dedopéva
tob Cauchy #ovv cupmayés otioryua, xai dv ioyver wig ovvdnxm uetaly TV
PUOLXDY  TAQUUETOWY %Al TMV YEMUETQWDY YaQauxrTnoLoTix®y tol meoPfAquatog,
téte 1| dvéoyela mov mEQLéyETaL 0F Wik opatoa Tuxovoag Gutivag EEaclevel Tov-
Adytotov oav t—2 xadag 6 yedvog t—> - . Of dgynes ovvdijreg tmerédnoav
1600 Aeleg oo Gmaitel 1 dmhovotevon TV Gmodeitewv. ‘O meploglopog Guwg
adtoc d&v megrooiler TV loxbv t@V dmoteheopudrov dedouévou Gtu dv ol doyuxeg
ouvdijxec elvar orouyeia €vog xatrdhAnlov yweov Sobolev téte pé td yvwota
Emyelonnata Tuxvdy Omoxdowy WmoQel xavels VO uetaégel T GmoteAéoparta
oTovg yEVIROUS avTovg yioove tol Sobolev. Td 6Ad deworinata Evégyelag
(véuor Bvegyeraniic dratnofoews) xai xvplwg ta Vewprpata tomxils Evegysiaxig
gEaodevijoewg ot0 y06vo, Gmoteholv tig Deuehidderg Extipnoeg (GviednTeg)
gndvo otig 6moleg otnolleral 1) morotixy pehéty tiig ovyyoovng Yewolag oxedd-
oemg ot mAaloto TV MUOUAdOV yoauuw@y teAecTd®v xal T Qaouatiniic Tov

avalioewg.



I0.

II.

I12.

I3.

14.

K.

€

%

W.

w.

SYNEAPIA THSZ 14 IOYNIOY 1979 303

REFERENCES

O. Friedrich, «Symmetric positive linear differential equations»
Comm. Pure Appl. Math., 11, 3, pp. 333-418, 1958.

.D. Lax and. R S. Phillips, «The wave equation in exterior do-

mains», Bull. Amer. Math. Soc. 68, pp. 47 - 49, 1962.

.D. ILax and S. R. Phillips, «Scattering Theory», Acad. Press. New

York, 1967.

D. Lax, S. C. Morawetz and R. S. Phillips, «Exponential
decay of the wave equation in the exterior of a star-shaped obstacle»,
Comm. Pure Appl. Math. 16, pp. 477 - 486, 1963.

.G. Mikhlin, <Linear Equations of Mathematical Physics» Holt, Ri-

nehart and Winston, New York, 1967.

S. Morawetz, «The Decay of Solutions of the Exterior Initial-
Boundary Value Problem for the Wave Equation», Comm. Pure Appl.
Math. 14, pp. 561 - 568, 1961.

S. Morawetz, «The limiting amplitude principle», Comm. Pure Appl.
Math. 15, pp. 349 - 362, 1962.

.S. Morawetz, «Time decay for the nonlinear Klein - Gordon equation»,

Proc. Roy. Soc. A 306, pp. 29I - 296, 1968.

S. Morawetz, «Decay for solutions of the Dirichlet exterior problem
for the wave equation«, Comm. Pure Appl. Math. 28, pp. 229 - 264, 1975.
V. Ralston, «Solutions of the wave equation with localized energy»,
Comm. Pure Appl. Math. 22, pp. 207 - 211, 1969.

W. S. Rayleigh, «The Theory of Sound» II, Dover, 1945.

A. Strauss, «Decay and asymptotics for Du=F (u)», J. Funct. Anal.
2, Pp. 409 - 457, 1968.

A. Strauss, «Dispersal Waves Vanishing on the Boundary of an
Exterior Domain», Comm. Pure Appl. Math. 28, pp. 265 - 278, 1975

. H. Wilcox, «The initial - boundary value problem for the wave equa-

tion in an exterior domain with spherical houndary», Notices A. M. S.
No. 564 - 240, 6, No. 7, 1959.



