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ABSTRAGT

The suggested impossibility of a consistent local extension of the quantum formalism is
reviewed in the context of the Einstein - Podolsky - Rosen-Bohm (EPRB) ideal experiment,
and a certain “‘impossibility proof” is shown to fall short of its stated goal. A consistent local
theory Th (G) is proposed here, which shows that local action suffices to explain all that
the quantum formalism predicts for the EPRB ideal experiment as well as some other

results.
1, INTR ODU GTTON

Although perhaps largely forgotten now, almost all eminent physicists of
von Neumann’s generation were spellbound by his 1932 proof[1] of the suggest-
ed impossibility of a consistent extension of the quantum formalism (QF) by
adjoining “hidden variables” to it. A “hidden variable” was postulated to be
anything else not yet accounted for by the specification of the quantum state
[ > characterizing a physical system. Von Neumann’s proof seemingly showed
that the postulated existence of such “hidden variables” contradicts QF, which
would have to be «objectively falsen[1] in order that a finer specification of
the state of a physical system could be possible than that stipulated by the
quantum state |{>.

The issue was whether or not there were deeper layers of physical reality,
such as those envisaged by de Broglie[2] and Einstein[3], not yet captured by the
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usual QF. Given that QF itself was not considered to be false, von Neumann’s
proof was hailed as ruling out the postulated existence of “hidden variables”
and the de Broglie-Einstein fanciful notions of some physical reality extend-
ing beyond the horizon delimited by QF and its dominant interpretation
advocated by Bohr and Heisenberg[4]. Nevertheless, on the issue of causality,
von Neumann did not apparently attribute to his theorem the extraordi-
nary claims attributed to it by others. For he clearly stated that «it would
be an exaggeration to maintain that causality has thereby been done away
with»[1].

In 1935 Grete Hermann[5] published a careful eritique of the von Neumann
theorem, and in particular of the von Neumann claim that one of the postu-
lates of his proof, namely, the additivity postulate, was valid «under all cir-
cumstances»[1]. This claim, which with hindsight we may here call the von Neu-
mann Universality Claim (cf. Section 2), asserted that the additivity postu-
late was valid for the class of all arbitrary states, which included both the
class of all quantum states and the class of all ““hidden-variable” states (the
so-called “dispersion free” states). In her little appreciated essay (written in
German) — it took until 1974 for her essay to be cited[6]—, Hermann argued
that the additivity postulate could not be claimed to be valid for the class of
all ““hidden-variable” states as von Neumann had asserted. Thus, Hermann’s
argument essentially established the falsity of von Neumann’s Universality
Claim[7].

Also in 1935 Einstein, Podolsky, and Rosen[8] (EPR) put forward a bril-
liant (and now famous) argument which, without contradicting QF, cogently
demonstrated the existence of “elements of reality”, which had eluded the net
of the usual specification of the quantum state | >, namely, that a particle can
at the same time possess a sharp position and momentum independently of any
measurement. The EPR argument rested on the tacit but crucial assumption
that there is no action at a distance. This crucial assumption was most rea-
sonable in the light of Einstein’s theory of special relativity, which prohibits
any causal action or influence from propagating faster than light, and it was
later explicitly formulated by Einstein[9] as the (weaker) Principle of Local
Action. EPR showed that the quantum state | ¢ > does not provide a complete
description of physical reality, but left open the question whether or not a
finer description exists and concluded with the belief that such a theory is

possible.
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In 1952 Bohm[10] proposed an ingenious extension of de Broglie’s[2] ““pilot
wave” theory showing explicitly how “hidden variables” could be consistently
adjoined to QF, thereby circumventing von Neumann’s impossibility proof,
and how they could be interpreted as definite particle trajectories in the Ga-
lilean space-time underlying Bohm’s (non-relativistic) theory. The manifest
“elements of reality”, in the shape of definite particle trajectories, were denied
any existence in the Bohr-Heisenberg interpretation of QF.

Bohm’s theory had indicated to some extent what paths to pursue (posi-
tive heuristic), and what paths to avoid (negative heuristic). The positive
heuristic of Bohm’s theory led to Bell’s[11] praiseworthy critique, which essen-
tially added to Hermann’s critique the construction of a counterexample.
More precisely, Bell demonstrated once again the falsity of von Neumann’s Uni-
versality Claim (attributed to the additivity postulate) by exhibiting a coun-
terexample showing that the additivity postulate was not satisfied for certain
“hidden-variable” states (albeit of «no physical significance»[11]), which when
averaged over gave results in agreement with QF. In the presence of this
counterexample and of Bohm’s theory, which both eircumvented the no-
hidden variable theorem, the von Neumann theorem was gradually laid to rest.
And like the EPR paper, Bell’s paper left open the question whether or not QF
could be consistently extended by adjoining local ‘hidden variables™ to it.

On the other hand, the negative heuristic of Bohm’s theory led to Bell’s[12]
replacement of von Neumann’s impossibility proof by yet another seemingly
more physically plausible impossibility proof whose spell-binding effect appears
now as potent as von Neumann’s was. Nevertheless, it will be argued here that
Bell’s impossibility proof (like von Neumann’s) not only falls short of its stated
goal, but leaves the real problem untouched.

The negative heuristic of Bohm’s theory, which apparently motivated
Bell’s impossibility proof, consists of certain anomalous features of «extraordi-
nary character»[11] that are now being presumed to constitute a necessary part
of any attempt to explain the quantum-statistical correlations exhibited in the
EPR - Bohm[13] (EPRB) ideal experiment. However, this is not so. The local
explanatory theory of the EPRB ideal experiment proposed here is free from
such anomalous features. We shall briefly describe the anomalous features in
Bohm’s theory and how they lead to an impasse if interpreted in the usual way.

In Bohm’s theory, whenever a pair of particles (s,, s,) is characterized by
a nonfactorizable quantum state |s,, s,>, the differential equations determin-
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ing the particle trajectories are coupled via the so-called “quantum potential”
Qg (the subscript g in Qg stands for “Galilean™). Although in general Qg is a
function of the two positions r; and r, of s; and s,, unlike a classical potential,
the values of Qg do not decrease as ‘the distance |r;—ry| increases. Thus, no
matter how far away s, may be located from s, (theil could be located a whole
Universe apart!), their trajectories remain mutually coupled.

Naturally, a question arises. Is the coupling of the trajectories of s; and
85, which is preserved at any distance | r,—r,| due to some physical action and,
if so, how 1s it related to Qg? :

Under the usual interpretation, Qg 1s said to induce an instantaneous phy-
sical action at any distance | r;—r,| which couples the trajectories of s, and s,.
This instantaneous physical action at any distance is now referred to as non-
local action in discussions of the EPRB experiment. In the Galilean space-time
underlying Bohm’s (non-relativistic) theory, the non-local physical action
attributed to Qz may be tolerated as a causal influence acting instantaneously
at any distance. However, in the more fundamental Minkowski space-time of
special relativity, the corresponding variant of the “quantum potential” Qm
(where the subscript m in Qm stands for “Minkowski”’) has no licence to
induce a causal influence acting instantaneously at any distance in Minkowski
space-time, even if one were to accept, provisionally, that Qm could be con-
structed since admittedly[14] Bohm’s theory has no consistent relativistic
extension.

Nevertheless, a consistent construction of Qn is usually taken for granted,
and furthermore Qm is being interpreted[15] as inducing a causal influence con-
necting spacelike-separated events, that is, events which lie outside each other’s
light cones. But if this interpretation of Qn were true, it would be inconsisten!
with the causality of special relativity. For it is not difficult to show (we
shall not do so here) that, if it exists, any such causal connection clashes with
the causal structure (order) of individual events in Minkowski space-time.

In discussions of the EPRB-type experiment designed by Aspect et al.[16],
where correlated photons v;jand vy, are being emitted in opposite directions by
some suitable source andjthen separately have their polarizations measured in
two spacelike-separated regions, it is often suggested that there is no real in-
consistency with the theory of special relativity because the causal “influence”
induced by Qm could not manifest itself at the statistical level in the form of
controllable information (signal) being exchanged faster than light between
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two spacelike-separated regions. Thus, the suggestion goes, no relativistic
prohibitions are being violated in EPRB-type experiments. Although correct
for a different reason, this suggestion does not address the real issue. For, as
indicated, the conflict with relativistic causality lies deeper than the statistical
level: It lies at the level of individual events and’of their particular outcomes in
Minkowski space-time, where (if it exists) the causal connection induced by
Qm is presumably at work by exerting instantaneous changes in the physical
properties (“elements of reality’) attributed to individual particles located in
spacelike-separated regions.

With this we conclude our brief description of the anomalous features in
Bohm’s theory and how they lead to an impasse if the notion of the “quantum
potential™ is interpreted in the suggested way. Next we shall consider Bell’s
impossibility proof, which was apparently motivated by the negative heuristic
of Bohm’s theory.

2. BELL’S CONJECTURE OF NONLOCALITY

Bell’s[12] impossibility proof, which we shall here call Bell’s conjecture of
nonlocality, purports to show that QF cannot be consistently extended by ad-
joining local “*hidden variables” and ““elements of reality” to it. According to

a recent book review,[17] Bell’s conjecture asserts:

«The incompatibility of any local hidden variables theory
with certain quantum mechanical predictions.» e
This assertion we have elsewhere[18] called the Universality Claim (UC) of Bell
et al.[19,20], that is, for EPRB-type experiments, ALL local theories give pre-
dictions different from those of QF. There, we explained the unrecognized[21]
crucial significance of UC as follows: If UC is true, then QF itself must be an
action at a distance theory irrespective of any possible interpretation of QF.
On the other hand, if UC is false, then QF could be a local theory. And,
by an ad absurdum disproof, we showed that a weaker UC is false. This
logically implies the falsity of the stronger UC of Bell et al in the form stated
above[22].
A more precise formulation of this conjecture of nonlocality can be found
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in Bell’s[12] earlier paper. We shall slightly sharpen Bell’s own formulation here.
Take the QF function P?zF defined on D2 by

P (o, 8) > cosa —B), V(o B) D7, (M)

which desecribes the quantum-statistical correlations exhibited in the EPRB
ideal experiment for all values assigned to the variables « and £ in the range D,

that is (ve,3 € D). Each value of the function pfy is interpreted as the (con-
ditional) joint probability for the coincidence detection (count) of both photons
v, and vy, emitted in opposite directions, and after passing their respective
polarizers P, and P,. The photons y, and y, are born by the spontaneous
annihilation decay of the (nonfactorizable) singlet state |y,,y,> prepared by
a suitable source. Under different value assignments in D, the values (elements
of D) o, ay,... and B, By, ... assigned to the variables « and 8 are interpreted
as the directions of the settings of the polarizers P, and P, respectively. The

QF marginal probability functions are Pl = % and p?zF:%.

Let (L1) ~ (L2) ~ (L3) denote the logical conjunction of the three formal
postulates of locality enunciated by Bell et al[12,20] (ef. Section 3), where the
symbol "~ " stands for the (truth-functional) conjunction. Let T denote a theory
whose postulates consist of the quadruple <A p,p;,py>, where A is the range
of the variable %, p is a specified function defined on A, and p,, p, are specified
functions defined on A x D. Then, Bell’s conjecture asserts that :

There exists NO consistent theory T whose postulates
< A,p,Py,pe> satisfy (L) » (L2) ~ (L3) and such that

(v e D) L costle —8)= £, 000 (e (0, B @)

holds.

Or, in Bell’s[12] own words, the QF probability function p?zF «cannot be repre-
sented, either accurately or arbitrarily closely, in the form (2).»

However, a consistent theory T has been constructed[23] whose postulates
<A\,,Py, o> do satisfy (L1) ~ (L2) » (L3) and generate a family of functions
{pi2]x € M} which converges uniformly to a unique limit function identical
with the QF function pg for vu,B €D, as the syntactical form (2) precisely
requires. Thus, T refutes Bell’s conjecture.
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The theory T will be further developed here into a local explanatory
theory Th(G) of the quantum-statistical correlations exhibited in the EPRB
experiment in terms of the initial (“hidden”) directions of the planes of po-
larization of each and every photon pair (v, v,) being born by the spontaneous
annihilation decay of the singlet states prepared by the source.

The theory Th(G) gives a causal and local (“common cause”) explanation
of the characteristic trait of the EPRB ideal experiment, where the directions
(given by values of the variable ) of the planes of polarization of each and
every photon pair (v, v,) are being chosen at random by the spontaneous
annihilation decay of the singlet states prepared by the source, and where the
directions (given by values of the variables « and 8) of the polarizer settings are
being chosen at random by the switches whilst the photons are in full flight as
in the experiment designed by Aspect et al. [16].

The theory Th(G) is based on postulates of a structural character as
Einstein had in mind (cf. Section 4). The postulates provide a consistent local
extension of QF, and thereby circumvent Bell’s impossibility proof. Further-
more, the precise possessed values of the adjoined “hidden variables” 2 and
w can be envisaged as Einstein’s “elements of reality” existing independently
of any measurement and to some extent missing from the specification of
the quantum state |v;,y,>.

Postulates IT, and II, of the theory Th(G) describe the probabilistic local
interaction between individual photons and polarizers. The more important
postulate II, describes the breaking lof the spherical symmetry of the
singlet state by introducing a slightly finer description than that given
by the singlet state. Postulate II, stipulates a conditional probability
distribution for the spherically symmetric singlet state |vy;, v,> to sponta-
neously disintegrate into two back-to-back photons plane-polarized in a
specific but randomly chosen direction, given by a value of the variable v, out
of all the equally likely choices of directions given by the range A of values of
the variable A. And each value of u is sufficient to completely specify the
direction of the plane of polarization of the two emerging back-to-back pho-
tons at the instant the singlet state explodes.

Postulate {II; in Th(G) is the local realistic counterpart of the non-
factorizable singlet state |v,, y,> in QF: The nonfactorizable (linear superposi-
tion) quantum state |y;, v,> involving two mutually exclusive alternatives is
the counterpart of the sum of two real-weighted probability distributions



ZYNEAPIA THX 24 OKTQBPIOY 1991 299

for the alternatives in question stipulated by II;. Furthermore, postulate II,
explains how the common phase of the two emerging back-to-back photons
plays a rather important role in the local realistic extension of the quantum
state |v;, o> proposed here.

By the postulates of the theory Th(G), each pair (v, v;,) of back-to-back
photons is characterized by a ¢alue of p., and the ensemble of such pairs being
emitted by the source is characterized by the whole range M of values of p.
specifying the initial directions of the planes of polarization of each and every
pair of back-to-back photons emerging at the instant the singlet states explode
by the process of spontaneous annihilation.

Also, over many experiments, each experiment involving one pair of
back-to-back photons, the ensemble (population) of such pairs of photons
being emitted by the source is uniformly distributed — axially invariant — over
the range M. But instead of assuming it, the axial invariance of the distribu-
tion can be deduced from the theory Th(G).

The formal part of our proposed local explanatory theory Th(G) of the
EPRB ideal experiment is established by the proof of the conditional sentence
3, which is displayed in Section 5. The sentence X expresses the formal defini-
tion of the uniform convergence of the family of functions {pi, | w € M}. In fact,
Y is the formal definition of the “limiting case’ itself. This is what the universal
quantifier (Ve > 0) in the prefix of Z means. The consequent in the conditional
sentence = defines the unique limit function of pi>| n. € M} by

Lim {pl ()} = pf¥ (. B) = g cos? (o —B), V(x, §) € D2, (3)

which is identical with the QF probability function p@F for all values in the
range D assigned to the variables o and .

Let G denote a realization (structure) of the theory Th(G) in the model-
theoretic sense (cf. Appendix B). By the proof of X, given in Appendix A, X is
a theorem of Th(G), briefly expressed by Th(G)r Z. Thus, the sentence X is
valid (true) in G, briefly G £ Z, or G is a model of X. The proof of X and its
interpretation in G demonstrates how the postulates of the theory Th(G) and
the unique limit function (3) meticulously satisfy (L1) ~ (L2) » (L3).

The conditional sentence X and its physical interpretation, given in
Section 5, underpins our proposed local explanatory theory Th(G) of the
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EPRB ideal experiment. Also, the quantifiers occurring in the prefix of X hold
the key to a proper understanding of the physics of the EPRB ideal experiment
and of its characteristic trait (mentioned above). The role of these quantifiers
will become more transparent in Section 5, where also some readily demon-
strable formal features of the sentence X and their related physical interpreta-
tion will be discussed.

3. THE FORMAL POSTULATES OF LOCALITY

Bell et al [12,20] enunciated three conditions for locality, which intend
to characterize physical locality. Here we shall collect together these condi-
tions, and re-state them in the shape of three formal postulates of locality
which any theory T, specified by some quadruple <A p,p,,ps>, must satisfy
if T is to qualify as a local theory in the sense of Bell et al.

(L1) Any joint probability function py, must be defined as a specified instance
of the syntactical form py, (e, B): = [,e(2)P2(2,%)pa(2,B)dR, where any
specified function p; must not depend upon the variable 2, and where
any specified function p, must not depend upon the variable «. [The form
Pra(ha,B): = Py(h,x)po(2,B) is known as the ““factorizability condition™.]

(L2) Any specified range A of the variable A must not depend either upon the
variable « or upon the variable {.

(L3) Any specified function p must not depend either upon the variable o or
upon the variable B.

Note well that (L3) does ‘not exclude the possibility that the function p

may be chosen to depend upon some other variable, say y, provided p. (like )

is a variable distinct from both variables o and B.

Two formal reminders seem in order here. Firstly, two distinct variables
may well have the same range. Otherwise, as Church[24] says, one would be
faced with the absurdity that any two distinet variables x and y whose range
is, say, some subset W of the set R of the real numbers must be identical.
Secondly, in a formal language with equality, denoted by the predicate sym-
bol’=" (notice the difference between =" in boldface and '=" in what follows),
the equation x = y can be satisfied even if the variables x and y are distinct.
For by the Basic Semantic Definition[25] (BSD), the equation x =7y is in-
terpreted as follows. Let x; and y; denote respectively the values of the distinct
variables x and y under the value assignment s, in some range W. Then, the
equation x = y is true (satisfied) if x, = y,, that is, if the values (elements of
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W) assigned to the variables x and y under s, are the same. And the equation
x =y is false (not satisfied) if x, # y,, that is, if the values assigned to the
variables x and y under s, are different. Thus, the equation x =y may be
true for one value assignment s, in W and false for another value assignment
s, in W. It is rather important to note that any value assignment s, in W is
independent of any other value assignment s,in W even ifs, and s, happen
to agree on a given variable. On the other hand, two variables may be said
to be identical if they are assigned the same values under any value as-
signment in any range.

These two formal reminders have the following physical significance. In
the local theory Th (G), since each pair of back-to-back photons is characteri-
zed by a value of the variable ., and since the initial directions (given by the
range M of values of ) of the planes of polarization of such pairs of photons
born by the spontaneous annihilation process are random, nothing prevents
the birth of a photon pair with a value p, which kappens by pure chance to be
equal to a value «, or B, of the setting of a polarizer, that is, p; = o, or p; =
under some value assignment s, in G. It would be physically unreasonable to
exclude ad hoc this perfectly local state of affairs. In fact, this local state of
affairs would refute (L3), if (L3) were interpreted as forbidding the possibility
U = o or w, = B, under some value assignment s, in G (cf. paragraph G in
Section 5). Furthermore, it would show that formal locality in the sense of Bell
et al could not characterize physical locality in the very simple sense just
described. In a parallel vein, nothing prevents the birth of another pair of
back-to-back photons with a value p, which happens by pure chance to be
different (even light-years apart) from some values «, ‘and 8, of the settings of
both polarizers so that p, # «, and p, # B, under another value assignment s,
in G (one would expect this situation to be true of almost all pairs of back-to-
back photons emitted by the source). It will be shown that the conditional
sentence X is galid (true) in G (G £ Z) for all value assignments s in G, and
therefore X is valid (true) for all such random choices of values irrespective of
whether the distance 1. — «| and | . — 8| between any values assigned to the va-
riables w,«,B is arbitrarily small or arbitrarily large (cf. paragraph B in Section 5).

4. THE POSTULATES OF THE THEORY Th(G)
The theory Th(G) is based on postulates of a structural character, which
provide a consistent local extension of QF. The first two postulates II, and II,
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describe the standard probabilistic local interaction between individual photons
and polarizers. Postulates II; and II, stipulate respectively two specified pro-
bability functions p; and p, defined on A x D by

(I;)  Pp: (M) = cos®(A —a), V(A,B)eA XD
(Iy)  pa: (A,B) — cos2(A —B), V(A,B)e A x D.

Since the symbol B does not occur in the definition of p;, and since the symbol
« does not oceur in the definition of p,, the functions p, and p, do manifestly
satisfy the “factorizability condition™ (see (L1) above) at the syntactical level.
Also, p; and p, are symmetrical in the sense of being the same functions of their
respective arguments. Furthermore, the values of p, and p, are bounded by
0 and 1, as probabilities should be. This answers what Feynman[26] has
called the «fundamental problemy.

The more important third postulate II; describes how the spontaneous
annihilation process itself breaks the spherical symmetry of the singlet state.
It does so by introducing a slightly finer description than that given by
the singlet state. In this sense, postulate II; could be said to describe how
the spontaneous annihilation process itself ““collapses’” or “disentangles™ the
singlet state, a description missing from QF.

Consider a photon pair (yy, v,) — or rather an ensemble of photon pairs —
characterized by the quantum state

s = \/iz [ x(v) > | X(va) > + 176r) > [70ra) > 1, (4)

known as the singlet state. Under the usual interpretation, | x(y,) > denotes the
plane-polarized quantum state of photon v, in the x direction and |y(y;)>
denotes the plane-polarized quantum state of photon v, in the y direction.
Similarly, | x(y,)> and |y(y,)> denote the corresponding quantum states of
photon v,.

We propose here the following realistic interpretation of the singlet state
[Y1, Y2> as describing the exclusive disjunction (ED):

“both photons are plane-polarized in the x direction OR ED
both photons are plane-polarized in the y direction”. (ED,)

Next we shall describe the two characteristic features of our local realistic ex-
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tension of the singlet state |v;, yv,>, which are incorporated into the definition
of p, stipulated by postulate [I;. This definition extends the linear super-
position (nonfactorizable) quantum state |v;, v,> of two mutually exclusive
alternatives into the sum of two real-weighted probability distributions for
the alternatives in question.

The first characteristic feature is this: There is nothing special about the
orthogonal directions x and y in ordinary space (here “orthogonal” in ordinary
space does correspond to “orthogonal” in the Hilbert space sense). One could

equally well choose any other pair of orthogonal directions in ordinary space,

say, » and A+ ; ) (or, say, A and A — ; TL'), all the more so since the sin-

glet state is spherically symmetric. Thus, the exclusive disjunction (ED;) now
reads:

“both photons are plane-polarized in the A direction OR

. 3 1 E e (EDz)
both photons are plane-polarized in the A 4 T direction”,

where the values of A specify any arbitrary direction in ordinary space.

The second characteristic feature is this: Before the spontaneous annihi-
lation decay of the spherically symmetric singlet state |vy;,y,> occurs, all
choices of directions A are equally likely. After the spontaneous annihilation
decay of |v,,v,> has taken place, a specific direction in ordinary space, given
by a value of the variable 1., has been randomly chosen by the spontaneous
annihilation process itself.

The following postulate II,incorporates these two characteristic features,
partly shared by and partly missing from the specification of the singlet state
[¥1,Y2>, into the definition of p, (the subscript p in g, stands for “photon pair”).
Thus, we postulate the following probability distribution g, and range A :

(IT3) op(A — ) 1 = 1? 3(7\—{-t)+3(7\—y-+;—7r)
(1Ly) A:={ —o <A<+ x},

where § is the Dirac distribution ( functional; see below) and the range A in-
cludes all possible directions A. The norm of g, is one, thatis, [app(A—p)
dr=1. Since the symbols « and B do not occur in the definitions of o, and A,
postulates II; and II, do manifestly satisfy (L3) and (L2) respectively at the
syntactical level.
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Postulate IT; stipulates the conditional probability distribution g, for
the spherically symmetric singlet state |y;,v, > to spontaneously disinte-
grate into two back-to-back photons plane-polarized in a specific but ran-
domly chosen direction, given by a value of p, out of all the equally likely
choices of directions given by the range A of values of the variable A (since
S 4 po(h —@)dn = 1). The postulated distribution p, gives each emerging pair
of back-to-back photons the mark of its birth by the spontaneous annihilation
decay of the singlet state. Also, the variables A and p, whose precise possessed
values can be envisaged as Einstein’s ‘elements of reality’, can be identified,
as Bell[27] suggests, with the common “causal factors”, where each value of
w can be regarded as the new local “element of reality’ created by the sponta-
neous annihilation process litself. Furthemore, [each value of the variable p.
is sufficient to completely specify the initial direction of the common plane of
polarization of the two emerging back-to-back photons at the instant the
singlet state explodes: For by the definition of p,, the exclusive disjunction
(ED,) becomes

“both photons are plane-polarized in the p direction OR

both photons are plane-polarized in the p.— % 7 direction”, (ED)

since integration over A using a Dirac distribution almost amounts to substi-
tuting . for A (see below), and where each of the two mutually exclusive alter-

natives has probability of occurrence equal to O

This also explains, in physical terms, why the ensemble of photon pairs
must be characterized by the whole range M of values of u specifying the initial
directions of the common planes of polarization of each and every pair of
back-to-back photons born by the spontaneous [annihilation decay of the
singlet states prepared by the source. Thus, by the rules of substitution the

ranges A and M of the variables A and p. must be the same so that
M:={p—ow<p< 4+ x} ()

where again the symbols « and B do not occur in the definition of the range M
which (like A) manifestly satisfies (L2).

One could equally well choose for the singlet state the equivalent repre-
sentation

(Y ta>= \712’ [ R(v1)> | R(yz) > +1L(y1) > | L(yz) > ]. (6)
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Under the usual interpretation, | R(y,)> denotes the right-handed circularly
(RHC) polarized quantum state of photon v, and | L(y;)> denotes the left-
handed circularly (LHC) polarized quantum state of photon v,. Similarly,
| R(y)> and | L(y,)> denote the corresponding quantum states for photon v,.

Now the proposed realistic interpretation of this representation of |v,,v,>
takes the shape of the following exclusive disjunction:

“both photons are RHC polarized OR

e (ED,)
both photons are LHC polarized”,

where again each of the two mutually exclusive alternatives has probability of

1
occurrence equal to o

The representation (6) of |y,,y,> may suggest that it does not require any
pair of orthogonal directions to define it. For it could be suggested that if a
photon is RHC or LHC, it should not have anything to do with the x and y

directions (or the A and A -+ —; 7 directions). But, as Feynman[28] stresses, it

is not true that a RHC or a LHC photon looks the same for any pair of ortho-
gonal directions. Its phase keeps track of the x (or y) direction. Similarly, the
common phase of the two emerging back-to-back photons keeps track of the p.
direction chosen by the spontaneous annihilation process itself. Thus, the
common phase of the two emerging back-to-back photons plays a rather
important role in the local realistic extension of | y;,y,> proposed here. Yet, as
far as we know, in discussions of the EPRB experiment the role of the com-
mon phase has remained virtually unrecognized.

By way of a heuristic illustration, one may depict the two photons as
spinning rifle bullets, whose spin is either right-handed or left-handed with
respect to their momentum directions, and think of the values of y as specify-
ing the common orientation of two back-to-back bullets just before the instant
they are fired off in opposite directions. And given the pitch of each spinning
bullet and its orientation at any other instant, one can always find which was
the value of the initial common orientation.

To sum up: The postulates of the theory Th(G) have a structural character
as Einstein had in mind. In particular, postulate I, holds the key to a causal
and local (“‘common cause”) explanation of the quantum-statistical correla-

tions ;~ cos*(« —pB) exhibited in the EPRB ideal experiment in terms of the

20



306 ITPAKTIKA THXE AKAAHMIAY AOGHNQON

initial (“hidden’’) directions p. of the common planes of polarization of each
and every pair of back-to-back photons being born by the spontaneous annihi-
lation decay of the singlet states prepared by the source.

Another reminder seems in order here concerning the Dirac distribution 3
in terms of which the postulated distribution p, is defined. By the term “distri-
bution I’ one means a functional defined on some function space ® whose
elements are called test functions ¢. Thus, the “arguments” on which a fun-
ctional I operates are the test functions ¢ € @ so that F: ¢ — F(g). Yet the
usual notation ‘8(x)” sometimes gives the rather unfortunate impression that
the arguments of the distribution § are real numbers rather than functions
belonging to a suitable function space. This impression essentially treats the
object “3(x)’ as if it were a function (as opposed to a functional), and then incor-
rectly identifies the set {0} of values of the variable x at which the “function”
3(x) is non-zero with, say, the set X on which the test functions ¢ € ® are defined.
One may be inclined to dismiss this reminder as splitting hairs. But if the
usual impression were true, then all integrals involving the “function”
3(x) would be zero since the set {O] has measure zero. In fact, the integral of
any function is zero when integrating over a set of measure zero. Thus,
the usual notation “3(x)” must be read as <3x, ¢ > = ¢(x), which means
pick the value ¢(x) of the test function ¢ at x € X rather than of the di-
stribution 8 which has no defined value at any x ¢ X at all (for there is no such
thing as «the value of a distribution F at a point»[29]). In the case considered
here, the test functions are p; and p,, given by II, and II,, and integration over
A using Dirac’s “8(A — ) etc essentially amounts to substituting the variable
w for the variable A occurring in py(A,a) and py(,B).

5. THE SENTENCE X AND ITS PHYSICAL INTERPRETATION

The local explanatory theory Th(G) of the EPRB ideal experiment propo-
sed here is based on the (first-order) conditional sentence =

(Ve >0) (31 >0) (Vo € M) (Va, € D) [(ju—a| <) v (| —PBl<n) D

[Pl (:B) — P (2, B)[< €],
and on a structure G in which X is satisfied. Since a sentence (like ) is valid

iff it is satisfiable, G is a model of Z (G £ X). The domain (universe) of G is the
set R+ x M x D (ef. Appendix B).
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Before we discuss the physical interpretation of the sentence X, it might
be helpful if we were to begin by explaining the notation, terminology and
certain salient points concerning the formal features of X. Later we shall
explain the role played by the quantifiers occurring in the prefix of X, which
hold the key to a proper understanding of the physics of the proposed local
explanatory theory Th(G) of the EPRB ideal experiment.

The proof of the sentence X is given in Appendix A. The symbol ‘+ is
used to express the fact that the sentence X is a ‘theorem of Th(G), briefly
Th(G) + X. The variables € and 1 = 2¢ (so that the choice of % depends only on ¢)
are assigned values in the set R* of positive real numbers. The symbols (Vx) and
(3x) stand for the universal and existential quantifiers respectively (when
the operator variable is x). The symbol “v” stands for the (truth-functional)
inclusive disjunction, and may be read as “or”. The symbol ““ > stands for the
(truth-functional) conditional which, with some caution, may be read as “If...,
then...”. More details of the notation and terminology used here can be found
elsewhere.[24,25]

The antecedent (|p.— a| < 2e) v (| — P < 2¢) in the conditional sentence X
is a propositional form [24] and as such it may be assigned the truth-value truth
under one value assignment s, is G to the variables p,e,f,e, and the truth-value
Jalsehood under another value assignment s,in G. With the sentence X proved
(Th(G) - X), the sentence X is valid (true) inG (G & Z) for all value assignments
s in G irrespective of whether the antecedent in X is true of false by virtue of
the Basic Semantic Definition[25] (BSD) of the (truth-functional) conditional
connective ““ 5 occurring in 2. Furthermore, whenever the antecedent in X is
satisfied (true), the consequent |pk, («,8) —pQF (x,8) [ < ¢ in X can be deduced
from X by modus ponens. The so deduced consequent defines the unique
limit function (3) of {p%,|w€ M}, which is identical with the QF joint probability
function pQF for all values in D assigned to the variables « and B.

The conditional sentence X expresses the formal definition of the¢ uniform
convergence of the family of functions {p%, | € M}. Since a family[30] (like a
sequence) is itself a function, what is considered here is the function with do-
main the index set M and codomain the indexed set {p%,|w€ M} of functions,
Thus, each value of y. corresponds to a member pY, of the set {p, | € M}, where
each function p¥ defined on D2 x M is deduced as a specified instance of the
syntactical form stipulated by (L1) using the conjunction IT; » II, » Il ~ I,
of the postulates of Th(G) so that
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p?z(“7B): = fAPPO\ = H)IB1(7\,°‘)P2(7\7@)d7\

1

= Z[1—]—(}032(;1.—0()0082 (w—p)] (7)
pit= Sapp (A —p) ﬁl (o) dd = ”zf (8)
phi = fapo (A=) P (0, B) dh = - )

The (constant) marginal probability functions p# and p4 are identical with the
(constant) QF marginal probability functions pt = p@F — % and p} = pQF = —;

Given that each value of u. determines the common plane of polarization of
each pair of back-to-back photons born at the instant the singlet state explodes,
each joint probability function p#, describes a purely local and probabilistic
interaction between each correlated photon v, (y,) and its corresponding
polarizer P, (P,), where each polarizer acts independently of the other polarizer
precisely as stipulated by the “factorizability condition™ (L1). Using the pro-
perties of the postulated distribution p,, this can be seen from

Bl (B = [P o) BB Fhale— O halu— f @], (10

pA

which shows that each p#, can be written as the sum of two real-weighted pro-

ducts p,p, of probabilities corresponding to the two mutually exclusive alter-
natives described by (EDg). Recall that each function p, (p,), given by II, (IL,),
determines the probability that each photon v, (y,) will get through its corre-
sponding polarizer P, (P,), given that photon v, (y,) is plane-polarized in the
@ direction OR in the p—;—n direction. Thus, given any value of p, each
polarizer interacts with its own photon since, in Bell’s[27] own words, (10)
already incorporates his «hypothesis of “local causality” or “no action at a
distance”».

Before we explain how the conditional sentence X describes the local
overall response of the apparatus (polarizers & detectors) to each and every
pair of back-to-back photons emitted by the source, we should discuss some
preliminary formal features of X and their physical interpretation.

(A) Since any two value assignments s, and s, in G are independent of each
other (even if s, and s, happen to agree on a given variable), for all value as-
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signments s in G, the value in M assigned to the variable u is independent of
the values in D assigned to the variables a and 8. In other words, the choice of
any value from M assigned to the variable p is independent of the choice of any
values from D assigned to the variables « and g for all w € M and all «, 8 € D.

On this formal feature of X is based the physical explanation of the chara-
cteristic trait of the EPRB ideal experiment, where the directions (given by
values of the variable ;) of the common planes of polarization of each and
every pair of back-to-back photons are being chosen at random by the spon-
taneous annihilation decay of the singlet states prepared by the source, and
where the directions (given be values of the variables « and B) of the polarizer
settings are being chosen at random by the switches whilst the photons are
in full flight as in the experiment designed by Aspect et al[16].

(B) Since X is a theorem of Th(G) (Th(G) v X), the sentence X is ¢alid (true)
inG (G E Z) for all value assignments s in G jrrespective of whether the ante-
cedent (Jp —a|<2) Vv (| — B| < 2¢) in X is true or false. Note well that the
antecedent in X does not impose any restriction on the value assignments s in G.
All value assignments s in G are equally free. Thus, the sentence X is valid in
G for all value assignments s in G irrespective of whether the distance |p— o |
and | — B| between any values assigned to the variables y, «, B is arbitrarily
small or arbitrarily large (cf. last paragraph of Section 3).

On this formal feature of X is based the physical explanation that the
source may choose to emit a pair of back-to-back photons with a value p, € M
being arbitrarily close to, OR another pair of back-to-back photons with a
value p, € M being light-years apart from any chosen values from D assigned
to the variables « and B, this choice being made by the spontaneous annihilation
process itself or, say, by the outcome of the toss of a coin. The sentence X is valid
(true) for all such random choices.

(C) Each instantiation of the conditional sentence X describes as ONE experi-
ment the local overall response of the apparatus (polarizer & detectors) to a
single pair of back-to-back photons emitted by the source. To see this, write
the antecedent in X in the form S, U Sg, where {Sx| « € D} and {S. |8 € D} are
indexed subsets of M defined by

Sa: ={u|—2 + o < p< a4 2) (11)
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Sp: ={p| —2 +a< p< a4 2), (12)
and such that
Mo U5, = UgSp. (13)

That is, the range (set) M is the set-theoretic union of the subsets S, or Sg, which
can be interpreted as angular sectors. Note that the index variable « (B)
occurring in U,S, (Ug Sg) is bound (“‘dummy’’) so that any other index variable,
say, & could replace « (B).

What each instantiation of X says is the following. For any chosen values
of o and B, whenever a value of p, characterizing the random direction of the
common plane of polarization of a single pair of back-to-back photons, happens
by pure chance to belong to subset S, or Sg, this single pair of back-to-back
photons gets through polarizers P; and P, and causes a coincidence count
with probability given by a value of the QF probability function p@F.

More precisely, let s, be a value assignment in G of some instantiation
of the sentence X, and let ., oy, 8; be the values in M and D assigned to the
variables p,u,8 under s,. Whenever the antecedent in the conditional sentence
2 is satisfied (true), that is,

1, €5,CM OR g, €S;CM, (14)

the consequent in X can be deduced from X by modus ponrens. And the so
deduced consequent determines the probability of the single pair of
back-to-back photons characterized by the (random) value w,€M to get
through the polarizers and cause a coincidence count, this propabi-

lity being equal to the value —;— cos?(a; — B,) under s, of the QF probability

function pQF defined by (1).

Naturally, a question arises. Do the detectors only register those pairs of
back-to-back photons with values of p. belonging to the subsets S,; or Sg; ? The
answer is: No. To see this, consider the following question which the local
theory Th(G) readily answers.

What happens to the single pair of back-to-back photons if its value p, € M
is such that the antecedent in X is not satisfied, that is, if

w1 ¢Sy AND  p,; ¢ Sp? (15)

If so, then the consequent in X cannot be deduced from X (we should warn that
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it is not sound to deduce the negation of the consequent in X from the conditio-
nal X and the negation of the antecedent in X; to presume that it is sound is
to commit the common fallacy known in logic as “denying the antecedent”).
Thus, it cannot be asserted that the single pair of back-to-back photons with
11 € M causes a coincidence count with probability ; cos?(e; —B;). But the
single pair of back-to-back photons with ., € M may fall inside another subset,
say, Sq, or Sp, of the set M, that is,

U €S, CM OR py€SsC M, (16)

so that it causes a coincidence count with a different probability%cosg(oc4 — Ba),
determined by the consequent in X deduced from X (by modus ponens) under
another value assignment s, in G' which agrees with s, on the variable p. (1, =p,)-

This argument, based upon instantiating X, also shows how the apparatus
responds, as it should, to the whole range M characterizing the ensemble of
pairs of back-to-back photons emitted by the source and not only to those pairs
of back-to-back photons with values of p. belonging, say, to the “small’ subset
Sey or Sgy. This is what the universal quantifiers (V. € M) and (Va,3 € D) in the
prefix of  do: They take into account ALL the “small” subsets S, or Sg of M.

(D) The universal quantifiers (V. = M) and (Va, 8 € D) occurring in the prefix of
the sentence X take into account the whole array of such possibilities (by in-
stantiation) so that the detectors accordingly register coincidence (and single)
counts with the same probabilities as those given by QF for each and every
pair of back-to-back photons being emitted by the source. Thus, in the light of
the conditional sentense X, each value of the QF probability function p%F can
now be interpreted, in purely local terms, as the fmeasure of the chance of
each pair of back-to-back photons, upon being born by the spontaneous
annihilation process, to get through the corresponding polarizers P, and P,
and cause a coincidence count.

Furthermore, since the QF probability function pQF is deducible from the
postulates of Th(G) via the consequent in the conditional sentence X, and
since in all experiments p%F has been found to correctly describe the response of
the apparatus (coincidence & single counts), it follows that the postulates of
Th(G) not only correctly describe the local overall response of the apparatus
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to the whole ensemble of photon pairs emitted by the source (characterized by
M), but more importantly the postulates of Th(G) also give a detailed realistic
description of this response in terms of the precise possessed values of the local
variable p, which specify the initial (“hidden”) directions of the common
planes of polarization of each and every pair of back-to-back photons born at
the instant the singlet states explode. This realistic “common cause” explana-
tion of the quantum-statistical correlations exhibited in the EPRB ideal ex-
periment is missing from QF.

(E) Over many experiments, each experiment involving one pair of back-to-
back photons, the ensemble of such pairs of photons being emitted by the
source is uniformly distributed — axially invariant — over the range M. But
instead of assuming it, the axial invariance of the distribution can be deduced
from Th (G) as follows.

Let the source be fixed. Rotate both polarizers P; and P, about their
common z axis so that their relative setting 0 = | — 8| is fixed to some arbi-
trary value (we may fix both polarizers and rotate the source about the z axis;
the situation is completely symmetrical). Since the choice of any value from
M assigned to w is independent of the choice of any values from D assigned to
o and B for all . € M and all «, € D (cf. paragraph A above), as the rotating
polarizers sweep different directions, such that |, — B = oy — Byl = ... =
0 = constant, different subsets Su; (Sg;), Sas (Sgs),. . . of photon pairs are being
selected from the ensemble emitted by the source. But, according to the limit
Sfunction (3) and the constant marginal probability functions (8) and (9),
nothing changes as the polarizers sweep around: The number of coincidence
and single counts remains the same (invariant). Given that the source generates
a constant flux of photon pairs, this implies that the number of photon pairs in
each and every subset Su; (Sg;), Sug (Sgo),... of M is the same, and furthermore
that the directions (given by values of 1) of the common planes of polarization
remain the same (invariant) as the polarizers sweep around selecting different
subsets of pairs of back-to-back photons emitted by the source. Thus, the
number and directions of the common planes of polarization of the pairs of
back-to-back photons are uniformly distributed — axially invariant — over
the range M[31].

But actually a little more has been shown than said above. Since the
source generates a constant flux of photon pairs, the total number of photon
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pairs impinging upon the polarizers is the same for all values of 0; and so it is
for each and every subset Su; (Sg;), Sas (Sgs),. . . of M. Different values of 0 do
not influence the uniform distribution of the ensemble of photon pairs imping-
ing upon the polarizers. Rather what happens with different choices of values
of 0 is that a different proportion of photon pairs gets through the polarizers to
cause a different number of coincidence counts, whilst the same total number of
photon pairs still impinges upon the polarizers as before. For example, whene-
ever the polarizers are parallel (0 = 0), the number of coincidence counts is

equal to the number of single counts (every coincidence count corresponds to a

% w), the

number of coincidence counts is zero, but the number of single counts remains

single count); and whenever the polarizers are orthogonal (6 =

the same as before because each and every correlated photon, contained in
each pair (v,,ys) of back-to-back photons, still impinges upon its corresponding
polarizer causing the same number of single counts for all values of 6 according
to (8) and (9).

The same argument allows us to add a little to the local interpretation of
the QF probability function p@F given in paragraph D above:

(IF) Since the choice of any value from M assigned to p is independent of the
choice of any values from D assigned to « and 8 for all w€ M and all o, € D,
choosing different settings (values of o and B) of the polarizers has no influence
upon the directions (values of p) of the common planes of polarization of the
pairs of back-to-back photons being emitted by the source. Thus, choosing a
different setting, say, oy (# @) of polarizer P, whilst the setting 8, of polarizer
P, is held fixed (B,=8,), simply means that a different subset Sy; (# Sy) of
photon pairs is being selected by the setting a, from the ensemble emitted by
the source causing a different number of coincidence counts with a different
probability value 2L cos*(a;—B,) of pQF (cf. text just before (16) in paragraph C
above). Note again, however, that the number of single counts remains the
same for any choice of settings.

Next we turn to consider two other readily demonstrable formal features of
the sentence X and their physical interpretation, which is of some importance.
As already mentioned,

(G) The sentence X expresses the formal definition of the uniform convergence
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of the family of functions {p4, |u€ M} to the function p@F. In fact, X is the
formal definition of the “limiting case” itself; this is what the universal quanti-
fier (Ve > 0) in the prefix of X means. Naturally, a question may arise: Does
the formal definition 2 of the “limiting case’ license the identification of the
variable p. either with the variable « or with the variable 8, denoted respecti-
vely by the equations p. = o or i = B? The answer is: No.

This can be demonstrated as follows. Since X is ¢alid (true) inG (G g X)
for all value assignments s in G, and since there are value assignments s in G such
that both equations u = « and p = B are false (notice again the “="" in bold-
face), it follows that the formal definition X of the “limiting case” does not
logically imply the identification u = o or p. = 8in G, nor licenses this identi-
fication anywhere in our construction (cf. penultimate paragraph of Section 3).

The same result can be demonstrated for other models G’ elementarily
equivalent to G (G and G’ are said to be elementarily equivalent, denoted by
G =G', if for any sentence ¢ we have G E ¢ <= G’ E ¢)[25], and such both
equations p. = o and p = { are always false in G'.

Before we consider the physical significance of any such model G” for the
formal postulate of locality (L3), we should explain how to obtain such a
model G’ for the sentence X (G’ g X).

Let the sets M and D be disjoint. By the Downward Lowenheim-Skolem
Theorem[25], the sentence X has an elementarily equivalent model G’ (G" £ X

<> G E X)such that the sets M’ and D" are also disjoint and such that M’ can
be chosen to be the set Z, of odd integers and D’ can be chosen to be the set Z.
of even integers. Then, any values in M’ assigned to the variable p. are always
different from any values in D assigned to the variables « and B, and therefore
the equations p. = o and p. = B are false in G’ for all value assignments s’ in G".
Thus, the identification p. = o« or . = B is impossible in G'.

The physical significance of this result for (L3), as envisaged in the light
of the postulated distribution p,, is this: If (.3) were interpreted as demanding
that p+# o and p# B should be always true, then (L3) can be meticulously
satisfied in G” since both equations p =« and p. = B are false in G’ for all value
assignments 8" in G’ (note that n = «is the negation of p+# « etc.). But, although
everything said so far about the physical interpretation of the sentence X goes
through, we would submit rather cogently that such an interpretation of (L3)
would not only be physically unreasonable, but must be actually false since
nothing prevents the birth of a pair of back-to-back photons with a value y,
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which happens by pure chance to be equal to a value o, or B, of the setting of a
polarizer so that p; = «; or y, = B, is actually true (cf. last paragraph of Sec-
tion 3). Thus, a physically tenable interpretation of (L3) must be based on a
model (like G) which allows for the possibility that p, = o; or u, = B, is true
under some value assignment.

On the other hand, any demand that the equations p. = « or u. = 8 should
be always true must be equally false on the physical grounds that nothing
prevents the birth of another pair of back-to-back photons with a value p,
which happens by pure chance to be different (even light-years apart) from
some values a, and 8, of the settings of both polarizers so that u, # «, and
Uy 7 By is actually true. One would expect this situation to be true of almost
all photon pairs being emitted by the source.

In the same vein, the ad hoc demand that p. = « or p= B should be always
true would also have the following bizarre conspiracy as a consequence, which
may even leave Laplace’s demon gaping: The random directions (given by
values of ) of the common planes of polarization of each and every pair of
back-to-back photons being born by the spontaneous annihilation process
would always ““fit” the random directions (given by values of « and B) of the
polarizer settings chosen whilst the photons are in full flight (as in the experi-
ment designed by Aspect et al). This would indeed be “spooky action at a dis-
stance” with a vengeance! But this bizarre conspiracy, based on the spurious
demand p = « or p = B, is ruled out ab initio by the models G and G’ of the
conditional sentence X (cf. also paragraph B above).

Nevertheless, “hanging on” to the spurious demand g =« or p. = 8 would
seemingly wipe out our proposed realistic local (“common cause”) explanation
of the quantum-statistical correlation exhibited in the EPRB ideal experiment,
an explanation missing from QF itself (cf. paragraphs C and D above). But no
surprise if the price of “hanging on” would be the unreal spooky stuff advocated
by Bell et al.

To sum up : The ad hoc demand that p.=ao or u. =8 should always be
true would not only be a spurious additional assumption unwarranted by the
models G and G’ of the conditional sentence X, but must be actually false on
physical grounds. Similarly, if (L3) were interpreted as demanding that p # «
and p # B should be always true, then such an interpretation of (L3) must
be equally false on physical grounds. This leaves G as the more physically rea-
sonable model of (L3) and of the conditional sentence X.
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Next we turn to consider the physical significance of the uniform con-
vergence of the familly of functions {p%, |p € M}. to the limit function (3).

(H) Since in the formal definition X the existential quantifier (3% > 0) precedes
the universal quantifier; (Va, 8 € D), what we have here is uniform convergence
and the choice of the variable n depends only upon the variable . Thus, as
chosen (n = 2¢) in the proof of X (cf. Appendix A), the same v = 2¢ serves at
every point of D? since uniform convergence has been proved with respect to
the whole domain of the limit function (3) (cf. Definition A2). The physical
significance of this result is rather important: The uniform convergence on D2
of the familly of functions { p%, |« € M} to the limit function (3) does not depend
upon any particular values in D assigned to the variables « and 8, and thus this
mode of (uniform) convergence is independent of the settings of the polarizers.

This point essentially concerns the (familiar) distinction between uniform
convergence and pointwise convergence[32,33] based upon the order in which
the quantifiers are being applied. If the sentence X were valid (true) in G only
for the case where the universal quantifier (Va, g € D) preceded the existential
quantifier (3n > 0), then convergence would be pointwise only. Then, the
choice of the variable n would not only depend upon ¢ but also upon values in
D, say, o5,0,. .. and B;,8,. .. assigned to the variables « and 8, and thus this
mode of (pointwise) convergence would depend upon the settings of the po-
larizers. But we must not have this implicit dependence. The stronger condi-
tion of uniform convergence obtained here excludes any such implicit depen-
dence by ensuring that the variable v is independent of any values in D assig-
ned to the variables « and B.

Next we would like to add here a brief note concerning the “no-enhance-
ment” hypothesis[20].

(I) The “no-enhancement” hypothesis asserts that for each and every photon
pair emitted by the source the probability of a count with polarizers in place is
less than or equal to the probability of a count with polarizers removed. In
other words, this physically reasonable hypothesis asserts that the presence of
the polarizers does not produce an enhanced detection of photon “downstream”
of the polarizers.

It has been shown elsewhere[22] that the postulates of Th(G) do satisfy the
“‘no-enhancement’ hypothesis. Th(G) is the only local theory that satisfies this
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hypothesis and agrees with QF on the EPRB ideal experiment. Furthermore,
by introducing measures of the inefficiency of the apparatus (polarizers &
detectors), it was predicted that there is no enhancement in the non-ideal
EPRB photon-cascade type experiments. The recent Stirling experiment[34]
confirmed this additional prediction.

Before we conclude this Section, we wish to add that the question of how
the consistent local theory Th(G) (cf. paragraph B4 of Appendix B) circum-
vents Bell’s “impossibility proof” will be discussed in another paper.

6. CONCLUSION

EPR left open the question whether or not a finer description exists than
that stipulated by the quantum state | ¢ >, and concluded with the belief that
such a theory is possible. The proposed theory Th(G) seems to answer the ques-
tion and conclusion posed by EPR in the following sense. Postulate II; of
Th(G) stipulates a finer state specification than that given by the quantum
state | y;,y.>. Postulate II; introduces the variable p. whose values can be

i d

interpreted as the new local “elements of reality’ created at the instant the
spontaneous annihilation process breaks the spherical symmetry of the singlet
state | y;,y.> into a pair of back-to-back photons having only axial symmetry
about the direction of their motion. In particular, the values of the variable
u— missing from the specification of the singlet state|vy,,yo> — specify the
initial (““hidden’) directions of the common planes of polarizations of each and
every pair of back-to-back photons being born at the instant the singlet states
explode, and thereby provide via the postulates of Th(G) a realistic and local
(“common cause”) explanation of the quantum-statistical correlations ex-
hibited in the EPRB ideal experiment. Thus, in this sense, Th(G) affirms

Einstein’s deep commitment to realism and locality.

APPENDIX A. THE PROOF OF THE SENTENCE X

Here two definitions are formulated and the theorem X of Th(G) (Th(G)
2) is proved. Some remarks and comments are also made.

Definition A.1: Let X be a topological space and x € X. Let Nx be the set
of basic neighbourhoods U of x ordered by the relation < on X such that U;<U,
<= U, C U,. Then Nxis said to be a directed (by downward inclusion)
set of basic neighbourhoods of x, and < is said to be a direction on X. The
collection NV: = { Ny | x € X} is said to be a direction in X[32].
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The notion of uniform convergence is not limited to sequences and series
of functions, but can be validly extended to a family of functions. We now
define it more formally, keeping the notation as close as possible to that used in
the text.

Definition A.2: Let D? be a subset of R2. Let M be a subset of R, and let V
be a direction in M. Let f: D2x M — R be a function. To each value of p.in M,
let there correspond a function f*: D2x M — R defined by f* (x): = f (g, x). Let
g: D2 R be a function. The family of functions {f*| . € M} is said to converge
uniformly to g on D2 if for every ¢ > 0 there exists an % > 0 (with % depending
only on &) corresponding to a basic neighbourhood N, in /V such that for Vp. € M
and for Vx € D? whenever the values of p. are in Ny, then|f+ (x) —g(x)| < ¢
holds. The function g is said to be the limit function of the family of functions
{I* |x € M},and it is uniquely determined. In symbols, lim{f* (x)} =g (x)
uniformly on D?[32]. wN

This definition requires that for each ¢ one single 7 (), depending only on
e, can be found which serves at every point x of D2. In other words, the corres-
ponding Ny can freely move about the whole domain D? since uniformity
is required with respect to the whole domain D2 of the limit function g. Thus,
Ny is independent of any values in D2 assigned to the variable x.

THEOREM A.3: The family of functions {p%,| w € M} converges uniform-

ly on D? to the function p3F and its unique limit function is
lim {pl(o,8)} = PEF (2,B) =5 cosi(a —B), V (a,8) € D2. (A1)
wN
Proof: Using the identity
cos2(e — B) = cos2(p — a)cos2(p. — B) + sin2(p. — «) sin2(pw — B), (A2)

valid for Vp € M and for Ve,8 € D, and the identity cos*(x — ) =—;— [1
+ cos2(e — B)] together with the definition of p¥, (,8) : = —Z—[l—l—cosZ (p—o)

cos2(w —B)], given by (7), we obtain | p¥, (a, B) — p%F («,B) l=—t— | sin2(p — o)
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sin 2(p.—p)|. Using the inequality | sin2(p—a) sin2(p.—B)| < |sin2 (u— oc)l together
with the inequality |sinz |< | z|, we deduce | p¥, («, B)—pSF (a, ﬁ)|~—~ sin2(p—ot)
sin 2(u—B) < 77|sm2(g¢ o) < 21 | w—oa| for, yp € Mand ye, B €D. It suffices
to choose 7=2¢ (y depending only on ¢) to establish that for Yy € M and
for Va,8 € D whenever the values of p are also in Ny : | y.—oc| P — Zs then
|p4, (,8) — P («, B) | < € follows. Thus, 1:1;1 P4, (2,B)} = p¥F («,8) = 5 cos?

(e — B) uniformly on D2

Comment 1: Using the inequality | sin2(pu — «)sin2(u — B) | < | sin2(px — B) |
the same result can be deduced. Thus, the antecedent of this deduction is
(p—a <) v(p—B' < n) withn =2c. Whence, by the Deduction Theorem
[25], the conditional sentence X is proved (Th(G) + X). ¥ is displayed in
Section 5.

Comment 2: The conditional sentence X is symmetric under the inter-
change of the variables « and B with one another (this is as it should be on phy-
sical grounds).

Comment 3: Another direction Ny in X (cf. Definition A.1) can also be
defined using the collection of deleted basic neighbourhoods of X. This collec-
tion Na consists of all directed sets of the form U\ {x}, where U is a basic neigh-
bourhood of x € X. Then, using the sirict inequality |sinz| < |z], valid for
z # 0, the above proof goes through as before, but the antecedent (| u—a|< %)
v (e —PB, < 7)in X must be replaced by (O < p—a|< ) v 0 < |p—B] <)
with n = 2¢ as before. The resulting conditional sentence is here denoted by
X4, and its proof has been given elsewhere[23], The structure G’, discussed in pa-
ragraph G of Section 5, is a model of Zq (G’ |= Zq). Recall that n7# o and p3 p
are true in G’ for all value assignments s" in G'.

APPENDIX B. SOME MODEL-THEORETIC NOTIONS

Model theory studies the relationship between sets of (first-order) sen-
tences and the structures in which they are satisfied, that is, their models. Here
only some model-theoretic notions will be outlined. They are mainly intended
as a brief introduction to the terminology used in the text. An advanced treat-
ment can be found elsewhere[25].
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The notions of satisfiability and truth may be intuitively clear, but a
rigorous definition can be given following Tarski (c¢f. Chapters 2 and 5 of Ref.
25). Such a definition is necessary for the formulation and understanding of
precise proofs.

(B1) A well-formed formula (wff), like the quantified formula (sentence) X,
is a syntactic object. A wff acquires semantic significance (meaning) only when
an interpretation is given to the symbols occurring in it. In order to interpret a
wif it is necessary to specify a structure B. A structure B consists of a non-empty
set B, called the domain (or universe) of B, together with mappings which as-
sign to each predicate symbol, function symbol and constant symbol occurring
in a wff a specific relation, function and individual object respectively.
Given a structure B, it is further necessary to specify a denumerable se-
quence s = < by,by,...> of elements of the domain B as an assignment of
values to the variables v,,v,,. .. so that the variable v; is assigned the element
bi € B under s. The elements b; of s need not be distinct and indeed each b;
in the sequence s may be the same element of B. Such a sequence s is called a
value assignment in B. In other words, a value assignment s: V — Bis a map-
ing from the set V of all variables into the domain B of B. Let S be the set of all
value assignments s in B (that is, the set of all denumerable sequences s of

elements of B). Note well that all choices of s from S are equally free.

(B2) Let B be a structure with domain B. Let S be the set of all value assign-
ments s in B. Let ¢ be a wif. Then,

(a) A value assignment s satisfies ¢ in B, denoted by B|= ¢, iff when
all predicate, function and constant symbols occurring in ¢ are inter-
preted in B, and when all free occurrences of the variables v; in ¢ are
replaced by their values b; € B under s (for each i), the resulting pro-
position is true in B.

(b) A wif ¢ is valid (true) in B, denoted by B E o, iff B |= ¢ for all value
assignments s in B.

The formal definition of satisfaction of ¢ in B proceeds by induction on the
degree of ¢ (dego). The technical details are not needed here, but can be found
elsewhere (cf. Chapter 5 of Ref. 25).

(B3) A wif which has no free variables — so that all occurrences of variables
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in it, if any, are bound (e.g. by quantifiers) — is called a sentence (like Z). For a
structure B and a sentence o, either

(a) B satisfies o with every value assignment s in B, or

(b) B does not satisfy ¢ with any value assignment s in B.
If alternative (a) holds, then o is said to be valid (true) in B (B E ), or that B
is a model of . And if alternative (b) holds, then of course ¢ is false in B. Al-
ternatives (a) and (b) are mutually exclusive. Note also that a sentence o is

valid iff o is satisfiable.

(B4) Let Th(B) be the set of all sentences o valid in B, that is,
Th(B): ={o| ¢ is a sentence and B E o}.

The set Th(B) is called a theory of B and is closed under logical implication,
that is, if B E o, then ¢ € Th(B). Furthermore, for any one structure B, Th(B)
is always a complete theory (and consistent) in the sense that, for any well-
formed sentence o of the formal language of Th(B), either ¢ € Th(B) or 16 €
Th(B), but not both since no structure B can be a model of both a sentence
and its negation 1 o. (In this sense, Th(G) is a complete and consistent theory
of G.)
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IEPTAH YT E

’Eni tob mpoPripatos tijg tomikijg énckrdoewg tob KPavrikod ®@oppaiicpod

Eic miv mapoboav épyactav énaveleraletar xal dmodetxvdetal w6 pi edotadic
T3V Srapbpwy Emiyctpnuatev 6t elvar &ddvatog # cuvemi)g Tomiky méxTAGLE TOD
KBavtinod Poppoakioumod &vtdg Tob mhatsiov Tob idavixod metpdpatos tév Einstein,
Podolsky, Rosen, Bohm (EPRB). ’Ev cuveyeta mpoteivetar véa, cuvemilg xal to-
ey Oewpta, 9 Oewpte Th (G) 9 omola Emextetver v KBavrixdy Poppatiopdy. Me
Baowy thy Ocwptoav Th (G) dmodeixvietar &tu %) Tominy dpdcig Emapxel va EEnyiom
8ha 8o 6 KBovrindg Poppahiopds mpoBiémet dua 10 Savinoy EPRB melpapa, xabog
éniong didet ml wAEoV EANX ONUAVTIXG ATOTEAEGPATA.

‘H Ocwpt Th (G) Pastletoar el téoonpas dErwpatinds mapadoyog (IT;, I,
I1,, T1,), 7o 8¢ ypapua “G” dnhol &va dnd ta mpdtuma (models) e mpotetvopévne
Ozwplag Th (G). “H Smapkic Tovddyiotov évdg mpotdmov G dmodewnvdst adctnpdds
&71 M Oewpta Th (G) elvar cuverig (consistent).

‘H mapadoyyn II; suvoporoyel éva miéov Aemropcph) xafopiopdy %atactdcens
&’ éxcivov Tig KBavrixije xatactdosme Emahimhioac | vy, Yo >, YVootiic &g singlet
state. Adtog 6 wAéov AemTopepnc xabopiopds raTasTAGEWG TEpLYpdPEL THY StdkaTra-
ow Tijg apxtpixils aupuetpiag THg KBavrixiic xatastdoeng |y, Yo > clg &va Lebyog
purtovioy pt dovixdy cuppetplay mepl THY xivowy TGV QwToviwy Tpdg dvtiBétoug
xatevbivoeic. Adth §) Sikemasic cuppetpiag (breaking of symmetry) elvar dmoté-
Aeopa Thg adbopuntou Srudixasiag dmocuvbésewe (spontaneous annihilation
process) eig v 6molav dmbxerrar ) KBavrind) xatdotacis | vy, o >

‘H mapadoyy II; elodyet Sbo dveEapthiToug petaBinrag A xal w, ai émolat cuvd-
nwtowy énil ol KBavrixol Popuakiopol dptopéva Tomind «otoryela TooypatiedT)Toc»
o 6mola ENheimouv &md Tov xabopropdy T KBavrixiig xatactdoewg Emadhniiag
Y Y2 >-

"Brantépwe, Exdotn Tiud i peTaBATic W doxel dik v& mpoodiopion TeAelwg
TV dpyeny (Tuyaiav) xatebBuvoy Tol xowol mmédov moAdeewg TV Sbo pwTo-
viwv 7é émola dvadlovrar THY GTiypyv xatd TV 6molav % xatdoTacl Emahlnhiag
[ Y1 Y2 > dmoouvrifetar, ol 81 adtd Exdom Tl THe petafhTic w wropst Vi Spuy-
veuBi] @g 6 véov Tomixdv «oTouyelov mpaypaTikdTyTOG), TO 6molov SnutovpyeiTal
amd adtiy xaf Exvthy Ty adBbpurntov Sredikactay drosuvbéocws. *Eniovg, % mapa-

A 3 ~ \ ~
dox IT; EEnyet g 1) xouvi) pdoig Tév ddo dvaduouévwv putoviwy maile &va doxera
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omoudaiov péhov eic TIY TpoTewvouévyy Tomxiy méntacwy tig KBavrikic xataotd-
oewg EmodnAtac | vy, vs >.

‘H mapadoyh 11, eig why Ocwptay Th (G) elvar td Tomxdy %ol peohiorindy dvri-
GTOLYOV TG 1) TXporyOVTOTTOL NGO XaTrGTAGEwG Emahhhtag [ vy, Yo > el TOV KBav-
oy Doppaniopsv: To dgoiopua tév ywopbvey 1@v xatacTatingy Stavusudrev
700 KPavrogoppodiopol, ta émola yapaxtneilouy tag ddo dpotPaiag dmoxierorinde
TEpLTTOOELG oG GTolog GUYOUOAOYEL H) (i) THEOYOVTOTOLAGLLOG XATAGTAGLS ETadh-
Anhiag [y, Yo >, petoypdoetar eig 1o dpotoua tév ywopbvey @&y Sd Spoug mbe-
vothtoy (conditional probabilities) el iy Oewptav Th (G), ai émoian yapaxtypi-
Touv tag 8Vo Gpohdyovg aupoBaine dmoxetotingg meptntdoete. Tolto Gmodetxvdet
n@¢ ol yvwotal pabyuatical cuvlixar «romixiic altiétyron ixavomotobvrar eig
v Bewpiay Th (G). "AMa mpérura G ororyetwdds ioodbvape mpds 1o mpbrumoy G
éniong xatacxsvalovral xal 1 Quotky Spumveto TV ) dmota dpopd Tog wabnuartixdg
suvlnrac «romixiic aittétnTooy culnTeiTat.

‘H Ocwpia Th (G) dider piav abriariv xad Tomixnfy (xowiig aitiac) dEfynow tob

4 ~ 3 ~ A o e 9 \
XUPLOITEQOL Y xPAXTNELETIXOD Tou idavixol mewpduatos EPRB, émov al &pyixal xa-
reuBivoeis (al dmotat dtdovran ué Tag Tipag ThHE peTafinTis k) TEY *otvédv EmméSwy

!, (3 £ ’ 4 3 ’ ’ 3 3 3 \ 3L \ \
TOADGERG ExxaTov Lebyous puToviny dmidéyportar Tvyalns & adthy xad’ Eavtiy Thy
wdBbpuntov Sradixaciav dmocubéccns @V xatacTdoemy Emadmhiag | vy, Yo > b
2 ~ A 3 \ ! £, \ o € A ~ ~
GTTOLOLL TWULPXLYOVTOL GO XATAMANAOY TTNYNY, %ol &7ov ol xateubivoels TGY TOAOTEHY
b3 3 ’ 3 \ \ A 3.~ A 4 e 4. 3 ’
Emléyortar Togalng dmd Todg ueTadhdxutag V& T poTéVIL sdploxovtar el TANEY

nTiow §mwg axplBés mpaypatonoleitar eig T Tetpopa TGV Aspect xal dAGY.

‘0 ’Axadnuainos x. Hepukhils Ogoxapng mposhéter ta EEFc oyeTixd mpog
TV aveTtépw pyactouy:

To Béua tHg mapodore épyasing dvdyetar 616 medPAua THe Tomindig SmenTd-
oewg 100 KBavrinol Popuaiiopod xal dpopd tig ddo Bacints Oewple Tig puatxiic Tob
2007 aidvog. ’Aq’ evog 1 KRavroBemptog xal &g’ Etépou g Oewplac THg oxeTindry-
7og. Ot 8bo adrec Bewpleg Oewpolvrar dovpBifactor Séi, | pév Oewpla THe oyeTind-
Trog Aéyel &t al puotkal Emdpdoeig 3tv umopoly va petadidwvror pd ToaydTyTo pe-
yohutépay Tl pwtég, Shady elvar Tomikal, ¢vé ) KBavrobewpla pt Bhow 10 iSavi-
%oy welpapa T6v *Aivetdwy, [lovrérony, Pélev, Moy, (EPRB) Aéyer 611 uotkal émi-
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Spdosig ) Tomikal Sdpyowy, Bacilopévn xal ént Tob Aeyouévou Bewpnuartog Bell.

‘H 2pyacta dmotehel Oépa peydhng Emotnuovinic onuaciag SuoT dvolyer véoug
. 4§ b \ 3 y A ~ ~ Ao ! A o 3
optlovrag elc Ty énéxtaocy ol goppakiopod s KBavrobewplag, oltws dore va
vivn Epntde 6 cupBuBacuds e pd Thy Bewplay T oyeTbTNTOG, TRGYRA TO bToloY
¢0cwpeito péypL oNuepoy dxatbpbutov.

*Av xal mhéov Epovy Anopovndi, &v todroig Ehot of Sidonuor guoinol THg yevedc
7ob von Neumann Foav yonrevpévor dmd Ty &médetkiv tov, 7 émola #yve 1 Eroc
1932 xal Sk tig dmotag dmedetnvue hy dSuvapioy susTuaTndc Enentdoewe Tob
KBavrinod Qoppakiopod Sue mposhnung cig adtov 16y Aeyoustvmv xpuedv petafBiy-
©Gv. M& oy 8pov xpue) uetafinty Gptleto 6,midmote &hho o dmotov 3ty EhapBdvero
O v xare oV xabopiopdy g KBavrixijs xartastdoews mwod éxapaxthpile vo pu-
owdv abepe. ‘H dmédeic tol von Neumann xatédeifev &t dpisleion Grmupkic

U ~ 3 ! \ \ \ \ e 2 e 4 \
Totobtwy petafintéy avriBativel mpds TOV %Bavtindy Qopuakioudy 6 6motog meémet va

3 ~ z \ \ & 3 \ L3
elvar dvtixeipevindds havlacpévog yio va elvar Suvatdg 6 Asmropcpéotepos xabope-
o6 THG XATAGTAGEMS TOD QUOIXOD GueTAUXTOS, THe 6prlopévng dnd v KBavri-
®NY RATEGTAOLY.

T Oépa iro &v Smijpyov Babdtepar SuasTomoeis e Quoxiic TpaypaTI*bTNTOS
8rwg adtal mod dvripetwnicOnoay dnd tov de Broglie, tov Einstein, ol ai dmotan
38y &yévovro dvrilymeral amd Tov xavovikdy KBavrinov Poppadiouéy. Acdopévou bt 6
KBavtixde Qoppatiouds, adtodg xal’ Eavtdy, dév E0zwpeirto Aavlaouévos, 7 dmddebic
7ol von Neumann &0cwp#0n d¢ dmoxhetovca tautoypdves thv aitoparixny Srapkly
TEY %pudY peTaITEY xalhg xal Tic 1816ppubucs Evvoieg Tév de Broglie xal Ein-
stein 7ic oyemlbpeves pé Ty uotly xatdotacty THv Erextewvopévny mépay Tol Gpi-

~ ~ ~ \ \ \ e 4 \ b ~ > \
Covrog Tl KBavtixol Poppatiopod xal thy Baciely Eppnvelay v clouybeioay dmd
7ov Bohr xat Heisenberg. *Ev tobtoig Spwg, €t ©f) Baoe: i dpxfic Tic altionpa-
tlag, 6 von Neumann oaivetor 6t d&v amédide 670 Bedpnud tov tic EEmpetinds
amonthoets wob Ewaeay Aol eig adTo.

T 1935 % Grete Hermann é§ypocteusey éumepiotatmuévny xprtiedy Tob fewpn-
patos 708 von Neumann xal iiurépws tol ioyvpiopol ol von Neumann &t éve
arnd ta dErdpata e anodeifedic Tov xal 3 1o dilwpa TposheTindTyTog loyuey clg
8hag tag mepintdioeic. To dElmpa adrd, 6 bmotov dvagépetar xal ®g draityerg may-
xoopLéTyTog, clofyaye Ty Eworay 8t 10 dblwpa wposhetinbdtyrog fro loyupdy dua

\ A o~ 3 . A ® 5 ~ A \ A
iy b Shwv Tdv dvebapThiTov xatacTdoewy al émotar mepteAduwBavoy Y T
8oy TV ®PavTindy ratactdoewy xadbg xal Thy TaEW BAGY TEY XATACTECEWDY TEHY
%pupdv petaPintév. 'EE &ov ) Hermann dmpwrito dv 16 dblwpa tig mpoahe-

Tixdnrog Stv 0o Hddvato va BewpnBf G loylov Bid thy tdiw @Y xatacTicEWY
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EAv TGV %pLedY peTaBiTéy ETwe 0edper 6 von Neumann. Kat’ adtdy tov tpb-
7oV 7 suAhoyioTied TH¢ Hermann édmuiobpynoe thy &woiav 7ol havbuouévon e
éwvolag Tiic TayrocpdTyTog 1ol von Neumann.

"Eniong 76 1935, ol ’Aiverdw, ITovtéroxy, Pélev (EPR) mpoérevay 6 mept-

3 ! 1 € ~ 1\ \ 3 ’ 1 1 hd

pnpov Emiyelpnua TO Gmolov, ywpls vo avtipdcny wpog Tov KBavrindvy Dopuait-
op.bv, anedelnvue Ty Gmaply «oroyetoy mpaypatixbétyrogy 1o dmoln elyav Six-
@iyer &md T6 TAéypa 7ol xavovikol xaboproped THY xataeTdoemy TEY ABEVTOY,
Inhadh, Gt va copatiSiov Sdvarar Tavtoyedves vo &y 7 Oéow xal pomiy
Mnhad, potiSe UTUL TEVTOYPOVLS V& xatéyn oo 0éowy xal pom)
aveZapTiTng Tol Thmov TiHe petpioewe. Al mpotdoeig TéY *Aivetdiy, [loviéhowy xal
Pé%ev, (EPR) éfasilovro cig miyv croommpdy diha Bastwdy mapadoyiy tie dvumapbiog
Spdoews €€ dmoctdoens. ‘H Baouc adth mapadoyd) firo cugic dvéer tiic Oewplag
i eldudic oyerivdnTog tob Einstein 4 dmotw dnayopebe: xdbe Spdoy 9 ntSpacty
e A ! 8[8 1 3 \ \ A L od a y € B & kA 7 8
7) omota Sradiderar Taydrepoy &md v TaybTyTa Tol QTS ket 7 dmota &pydrepov Sie-
tunely cupds dnd tov Einstein dg 4 doyn tic Tomixiig Spdocws. Olrw &delyby
®atd TOV GuAAoyioudy T6Y Aivetdwy, IMovréioxu xai Pélev (EPR), éu # %Bavti-
x| xotaetacts S&v mapéyel TANEN TEPLYPUPNY TTG QUOIXTIE TERYLATIRETYTOS G
o

3 A 3 \ \ 3 ’, -~ \ A A 3 1 \ ’ \
xAQTVEL AVOLKTTNV TNV EQUWTYGLY &V V&L 7] o)L (i EUGCLGe'f]TOTSPOC TEQLY PUPY SUWXTOL! Vo

~

omapln, xal xatédys ué thy whoty 1t pba TowadTy Oewpla elvar Suvath.

To 1952 6 Bohm mpoérewvey #vmvy dnéurascy g Dewplas Tob de Broglie, tév
oSNy &Y xopdTwY, Grodeinviovrag cupds 611 al xpupal petalinTal Shvavrar vi wpo-
ooptnBolv cuoTnuaTinés mede Tov KPavtindy Goppatioudy xal xat” adtdy 1oV Tpémov
mapéxopds Thy anédeby &duvautag Tob von Neumann. *Enl mhéov &3aife néic 8-
vavrar va Eppnvenfoly G¢ xabwpropévar, Tpoytal 16y copatdioy elc tov Takhatov
1 wpoyeovoy drov Basilera: ) Ocwple 7ol Bohm.

‘H Oewpio oD Bohm &3zife péyprc evdg omueton i Spbpovs mpémer v dxohovdi
navelg xal ti vo gmogedyy. Obrw elofybyn 1) Oetuen xal § dpvyrind) edpromind) Sro-
duaota. ‘H Oetindy edprotind thic Oewplag o Bohm O3fyyoev el thy dmavetindy
xprtiniy Tob Bell ) dmola mposéleoey odoraatindg elc thy nprrindpy tiic Hermann iy
Srapbppuoty avrimapudstypatoc. Obrw 6 Bell dnédeifey x véou 10 Aavdasuévoy i
TpoTAcEwg Tayrosuibétyros ol von Neumann, mapoverdlovrag dvtimapdderypo
amodetxviov 67 76 dElopa mpochetindnTog Stv ixavormorelto S’ dpropévag xautasTd-
GELG XPUPEHY PeTaBANTEY ol Gmolar GhoxAnpodpevar E3iSov dmotéleopa adppove pé
7OV %PavTindV QopuaALGp.oy.

Obrw, S ¢ dmdplews Tob avmimapadelypatos adrol xal tig Oswplag Tob
Bohm, 76 fcdpnpa tol von Neumann mpooSevtindée ynareheiqby. "EE &ov ) 2o-
yaoioe tév "Aiverdwy, ovtéhexv xai Pélev (EPR), petd t¥c épyasiac 1ol Bell



328 ITPAKTIKA THE AKAAHMIAY AGHNQON

b 3 \ \ 3 ’ 2.3 e \ \ U N o T
&pnowy avoLxTIy THY EpWTNoW €av 6 xXBavrinds popuaiads ddvatar ¥ Gyt vo émexTo-
0% p& cuvémetay xal vo. auvdeli Tomedic Pt The npuPdg peTaBAyTdC.

*EZ &xhov 1) dpvntind) edplotind) g Bewplag Tob Bohm G37nynoey el iy dvrina-
TaoTasL THE dmodeifewe dduvayiag Tol von Neumann (d¢ alty cuvemdneddy dnd
\ A ~ 3 & 4 ~ ’ ~ ] ik
v Tposlnuny tob Bell), 8 étépag pavopevinids meprocbrepov metoTixdg dmwodei-

L2

Eews dduvaping, &€ toov uvapixic O¢ xal 1 anédeifig von Neumann. Eig thy dmo
avaxoivwowy Epyaciay peuvitor xal amodeixvietar 671 N anédeéic dduvaplag Tob
Bell, émoe xai tol von Neumann, &y pévov elvaw dvemapuiic Sid tov Emlnrol-
UEVOV GROTEOV GAAG %ol GpY)VEL TO TRoypaTikdy TpoBANua &OixTov.

‘H dpvyrind edprominn Suadixacto t7g Oewptag Bohm cuvistatar dmd dpiopéva
AVO UL YOPARTNPLOTING EXTAKTOL YOUPAXTH P0G, Ta Gmoia motifetan 6Tt dmoTeholy
avayratov Tpfjpe xade mpoorabetag Eopnveing T6BV %Pavtidyv oTaTioTIRGY GueYETE-
ooy éxtifepévay eig 70 EPRB iSavixdv melpape. *Amodenvierar el tiv Epyasiay
671 o év Moy 88y toydovy. ‘H tomuy Emebnynuotiny Ocwpta tol idavivod EPRB
TELPARATOG, 7) 6ot TpoTelveTar elg Tiv épyactay, elvar dmeievBepwpévy dmd Totadta
avodpeda yapaxtyprotixd. Eig iy Epyastiav adtiy meprypdpovrar xal dwodetxviovrot
To Gvopaio adte youpaxtnproTing i Ocwplog Bohm xal EEvyeitor nég adrd 637-
yobv eic ddiéEodov éav Epunveuloly xatd TOV xavovixdy Tpbmoy.

Eig tiv dpyiv tij¢ épyastag yivetar ioTopuny) dvagopd, &md 76 1935 xal évrelbev
TGV Epyactdy TOAGY ooy EmieTuévey Tod foyohilnoay pi t6 medBAnua,
émwe wév von Neumann, de Broglie, Hermann, Einstein, Podolsky, Rosen, Bohm
Bohr, Heisenberg, Bell, &¢ dvepépbnoay mponyovpéves, e ériong xal eig thy EAny
eEEMEY Tdv Omip nal TAV xatd dmbPswyv mwod AviyMdynoay xal cuvelnThOncayv
xopls va 3007 xappia Aorg. *Ev cuveyety, Emavelerdletar 16 Ocmpnua ol Bell xal
amodeixvicTar i 8t émituyydver Tob oxomol Tou. Tehude mporetvetar véa cuverig
ToTuey Oewpla, ue Ty émolay dmodeinvderar 8t f) Tomnd) Spdiog Emapuct va EEnynon
62 oo 6 KBavrinds Popuatiouds mpoPréme: Sud 1o idavixdv nelpapa tév ’Aivetdy,
Hovtéroxy, Pélev, Mnép. (EPRB), xafidg émiong Side éml mhéov & onpavTins
amoreréopata. “H Eoyasia adth, xard thy yvduny to wapovsidfovrds Ty, drotehel
oNpavtieny cupBoldy eig t& Busix mpoPAjuata Tig cuyyedvou BewpnTiniic puottic
nod Sude Thv Abyov adtdv upodlovrar xal dmd THe Béscws Tadtyg T Oepud ouyya-

PN ThHPLL.



