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ANAAYTIKH TEQMETPIA. — Contributions to Curve Tracing, 04y
Christos B. Glavas*. Avexowddn Um0 tod ‘Axadnpaixod z. Todvy:
Eavddu.

Introduction - Besides the existing methods on curve tracing another
one is presented in this paper, which may be proved useful in certain cases
By the proposed method a curve C,, represented by the equation f(a,, b,) =
=0 in the coordinate system (a;, b;), is transformed to another curve C,
represented by the equation f (a,, bo)=0 in the system (a,, b,). If the latter
curve is much simpler or well known then one can transform C, into C, by
means of a finite number of Euclidean constructions.

Two relations f,(a,, b;)=0 and f,(a;, by)=0 expressed in the sys-
tems (a,, b,), (as, b,) respectively are analytically equivalent if there are
formulae of transformation between the two systems such that each can be
transformed to the other. In a previous report it is shown that two curves
f (ay, b)=0 and f (a,, by) =0 corresponding to the same analytical relation
represent «geometrically equivalent» curves if each can be transformed geo-
metrically to the other'. This is possible if the systems (a,, b,), (a,, bs)
are geometrically equivalent, i.e. if a,=a,, b,=b, and given a point A de-

* X, B, TKAABA : ZopBoin &ig Tiv x&pxfiv xaundiav ypappdv,

t C. B. Gravas, «The Principle of Geometrical Equivalence and Some of its Con-
sequences to the Theory of Curves», Proceedings of the Academy of Athens, 32 (1957),
p. 122-124.
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termined by the first system one can go to a second B determined by the
other system by a finite number of geometrical constructions.

The procedure which is followed in this paper consists first of a
brief review of certain geometrically equivalent coordinate systems. Then
two cases of the application of the proposed method of curve tracing are
examined. The first and simpler one uses two coordinate systems while
the second and more complicated more than two systems. The purpose of
the given examples is not to present specific cases but only to illustrate
the new method.

It should be noted that a certain method used by Frost has nothing
to do with the one proposed here, for the former is not general and is
based on auxiliary curves and not on coordinate systems.”

I. The two well known coordinate systems, the Cartesian (x,y) and
the polar (r,), are not geometrically equivalent since the latter contains an
angular measure, the angle @, while the first has two linear ones. In the
cathetic system (Fig 1.1) a point P is defined by the polar angle 8 and the
segment OG =g, where G is the intersection of the perpendicular on OP
at P with the polar axis®.

=06

Fig r.I.

It is not difficult to find the formulae of transformation from the
Cartesian system to the cathetic and vice versa, which are:
X = gcos’@ , y=gsingcoso

3 2
(Ia) g=x'ﬂ y tan@ = 4
X X

® P. FROST, dAn FElementary Treatise on Curve Tracing, New York, Chelsea Publi-
shing Co., Fifth Ed., 1960, p. 177-183.

8 C. B. Gravas, «Plane Coordinate Systems in Mathematics Study», Doctoral
Dissertation, New York, Teachers College, Columbia University, 1956, Ch. III.
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Also, since 0 is common to the polar and cathetic systems, the for-
mula of transformation between these systems is r=g-cosf. If on the Oy
axis we take OI=1 and from I we draw a perpendicular on the radius
vector OP, we determine the point T as the intersection of this perpendi-
cular with the Ox axis. Then we see that OT=tan@. If we put tang=t,

Q5.0 P(m0)

Fig. 1.2,

and we define t positive to the right of the origin O and negative to the
left of it, we have the «tangential» forms of the polar and cathetic systems.
Each point P may be determined by the pair of numbers (r,t) or (g,t). Then

formulae (la) become:

B sl W .
4 14t 2 lalet?
(Ib) 3 2
g=XTty _ ¥
X X
For the polar system we have x=rcos§ =—— — y_rsme—*f't'
V14t l—l—t” v 14t

It is important to observe that by the formulae (1a), (1b) the coordinates
x,y are expressed as rational functions of g,t and vice versa.

The systems (r,0) and (g,0) are analytically and geometrically equi-
valent. The first is clear since we have already established before the for-
mula r=gcos@. For the second, take the point P(r,8) (Fig. 1.2) and on the
Ox axis OG =0OP=r. Then from G draw a perpendicular OQ on OP. The
point Q has cathetic coordinates OG=g=r and . Conversely, given Q
one can detemine P by applying the reverse process. The systems therefore
(r,0) and (g,0) are geometrically equivalent.

The Cartesian (x,y) and the systems (r,t) and (g,t) may be proved to
be geometrically equivalent. Given R(x,y) (Fig. 1.3) draw the perpendicu-
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lar RT on Ox axis. Join [ to T and from O draw OP perpendicular on IT.
Take OP=TR=y. Since OT=x=t, the systems (x,y) and (t,r) are geome-
trically equivalent. Similarly, if we take OG=RT=y, and from G we draw
a perpendicular GQ on OP, then the points Q(g,t) and R(y,x) have g=y
and x=t, which shows that the systems are geometrically equivalent. If
the point for example R(x,y) describes a curve, then the corresponding
point P(r,t) or Qlg,t) describes another one, the points of which may be
detemined by the above simple process.

k
R(xuY)
Pnt)
I Qlgt)
0
) T G &
Fig. 1.3

2. After the above remarks we proceed to the examination of the
first case about curve tracing. This will be done by the presentation of
certain examples.

Example 2.1. Trace the curve g=t. For one who is not familiar with
cathetic coordinates this equation may be transformed to the Cartesian
system by the application of formulae (Ib). Then immediately one reco-
gnizes the kind of the curve the given equation represents. But, for the
sake of illustrating the new method, equation g=t has as its geometri-
cally equivalent the equation y=x in the Cartesian system. Therefore we

may write (g=t) & (y=x). But y=x is well known to be the line through
the origin making with Ox axis an angle of 45° (Fig. 2.1).

From the known line y=x we may trace the corresponding one g=t.
Take the point P (x,y) and draw the perpendicular PT on Ox. Join I to T
and draw OQ perpendicular on IT. Take on Ox axis a segment equal to
PT(=OT). From T draw a perpendicular to OQ. Their point of intersection
coincides with point Q. Then we immediately see that Q is on a circum-
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ference with diameter OI=1. The origin O corresponds to itself, while it
is not difficult to see that the infinite point of OP corresponds to I. Really,
for the infinite point of OP, IT becomes parallel to Ox. Its intersection
with the perpendicular from O is evidently the point I. The points of
OP’ correspond to the semicircumference on the left of Oy and the infi-

nite point of OP’ corresponds again to I.

i 4

Qglt)

X

Pl

Fig 2.1.

This simple example shows the quick results of the new method. It
is not necessary to find many points in order to trace the required curve.
Here the branch OP of y=x has as its «image» the branch OQI, while OP’
is transformed to the other one. The line y=x «bends itself» from both si-
des around O with the infinite point falling on I. Thus the straight line
OP is converted to its geometrically equivalent closed curve which is a
circle. Since in this case the equations of the two curves have the form
f(x,y) =0 and f(t.g) =0, it is clear that there exists a one-to-one correspon-
dence between their points. To the point (x,y) satisfying the equation
f(x,y) =0 their corresponds the point (t,g) satisfying the equation f(t,g)=0,
while we have x=t and y=g. The line y=x may be considered as a clo-
sed curve with its two infinite points on both sides coinciding to one
which corresponds to the point I of the curve g=t.

Example 2.2. Trace the curve (x’+y?)’+y’=x". In this second exam-
ple the equation of a curve is given in the Cartesian system (x,y). If we
2 R

2

write it in the form + o =1 and apply the formulae (Ib) we
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get g’+t’=1. The two latter equations represent one and the same curve,
expressed in two different coordinate systems. We can immediately write
the corresponding geometrically equivalent of g?+t*=1 in the system (x,y),
which is y’4x*=1. But this is a well known curve, a circle through the
origin with radius 1. Therefore, starting from an unknown curve in the
system (x,y) we find a known curve again in the system (x,y). If we trace
the latter we can trace the original also by applying the process of geome-
trical constructions from (x,y) to (t,g).

In Figure 2.2. the circle x*+y*=1 may be converted geometrically to
the curve (x’+y®)’+y’=x* or g?+t>=1. The point R of this circle has as
its image the point Q of the curve. Really, drop a perpendicular ON on
IM. Take OL=MR =y and from L draw a perpendicular on ON interse-
cting with the latter at Q. Then Q is the corresponding point to R. It is
easily found that the points I,I, AJA’ are transformed to the points AA’,

Fig. 2.2,

0,0 respectively. Therefore it is immediately seen that the arc Al is trans-
formed to the arc OQA and the ares I'A, I'A’, TA' to the arcs OQ A/,
OQ'A’, OQ"’A. Since the four arcs of the circle are equal, then the corre-
sponding arcs of the curve must be equal. Thus the required tracing of
the given equation is very quick, based on the transformation of certain
important points of the circle.

In order to fully appreciate the importance of this method we must
remember that «geometrically equivalent curves have those properties in
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common which are the by-product of the same analytical operations on
their common equation»*. To the tangents x=z=1 at the points A A’ of
the circle x’+y*=1 there must correspond the tangent lines t===1 or
y==t£x of the curve under tracing, which is true. Also to the tangents

==+1 at [,I' of the circle there must correspond the tangent lines g==t1
or x*+y*’=d3:x of the curve at the points A,A’. The circle x*}y*=1 is sym-
metrical with respect to x=0, y=0 and the origin (x=0 and y=0).
Then the curve must be symmetrical to the lines t=0, g=0, which is
equivalent to saying that the curve is symmetrical to both axes x=0,
y=0 and the origin O.

1Y
3
2 A £
Q
I A’
7 R
2 3 4 5 =

Fig. 2.3

We remarked in the previous example 2.1 that there exists a one-
to-one correspondence between the points of two geometrically equivalent
curves. But in our case we found that the points A,A’ are transformed to
one point O. However the one-to-one correspondence may be preserved
by observing that to the point A with coordinates x=1 y=0 there
must correspond a point with coordinates t=1l, g=0 which is the origin

4C. B. Gravas, «The Principle of Geometrical Equivalence and Some of its
Consequences to the Theory of Curvess, Proceedings of the Academy of Athens, 32 (1957),
P. 126,
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O, lying on the line t=1 or y=x. On the other hand the point A’ (x=-—1,
y=0) corresponds to the point O lying on the line t=—1I or y=—x.

Also, «geometrically equivalent curves represented by the same equ-
ation have maxima and minima corresponding to common values of the
variables»®. To the maximum point I (0,1) of the circle there corresponds
the maximum point t=0, g=I or y=0, x=I, i.e. the point A of the curve,
which is true, etc. Thus we see that by the new method we may quickly tra-
ce an unknown curve by transforming to it its geometrically equivalent. At
the same time we may discover many properties of that curve by properly
«translating» the corresponding ones to the known cuarve.

Example 2.3. Trace the curve (x*+y’— 2x)’=xy—x’. This equation is
transformed analytically by applying formulae (Ib) and becomes (g — 2)*=t — 1.
Its geometrically equivalent curve is (y —2)?=x—1, which represents a pa-
rabola with vertex A (1,2) (Fig. 2.3), and which is very easily traced.

The geometrical image of this parabola is the required curve. The
point A is transformed to the point A" of the curve. The point R to the
point Q and the infinite point to the origin O. With the help perhaps of a
few more points we trace the branch A’QO of the curve corresponding to
the branch AR of our parabola.

Now we observe that the line y=2 is the axis of symmetry for the
parabola. This means that if we draw the (perpendicular) line for example
x=3 from R, find the intersection L with y=2 and take on x=3 a segment
R’'L=RL, then R is a point of the parabola. If we translate this phrase
properly we see that to y=2 there corresponds the circle g=2 (or x’+y’=
=2x), to the line x=38 the line t=3 (or y=3x) through the origin. Their
intersection is the point L’ If we take on t=3 from Q a segment QL =
=Q'L/, then Q" is a point of the curve. Therefore, it is enough to find
the symmetrical branch of A’QO with respect to the circle g=2 (OA’MO)
in the above sense.

Note also that the line y=2 intersects with the parabola at the point
A (x=1,y=2) and at the infinite point. The corresponding line g=2 (the
circle OA'MO) intersects with the curve at the point A’(t=1, g=2) and
the origin O corresponding to the infinite point. The line x=1 is tangent
to the parabola at the point A (x=1, y=2) while the corresponding line

5 Loc. cit.
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t=1 or y=x must be tangent to our curve at the point A’ (t=1, g=2).
The part of the parabola below the Ox axis is transformed into the small
part of our curve lying in the third quadrant, while the point N (5,0) is
transformed to the origin lying on the line t=>5 (y=5bx).

If the given equation is g’=t, then the corresponding curve is the
image of the parabola y’=x. The two branches of g’=t are symmetrical
with respect to the origin O and the tracing is much easier.

3. Now we are going to apply our method to a more complicated
case where more than one coordinate systems are used. One may readily
see that the proposed method has infinite possibilities for curve tracing.
The few examples, which are given below have again the purpose of il-
lustrating the second case.

A(LY) - 0
K ol (24
8(§0)
[
e
o ™ G -
Fig. 3

Let be given the equation f(x,y)=0. Transforming this analytically
into the (r,0) system we get f(rcos®,rsing)=0. The geometrically equiva-
lent of the latter in the system (g,0) is f(gcos@,gsing)=0. The analytically

equivalent of the latter in the system (r,t) is found if we put g=

)

cosf
sin@ : : .
t=E§9—' Hence we get f(r,rt)=0. Finally transforming geometrically
f(r,rt)=0 to the (x,y) system we get f(y,yx)=0. This process is symbolically

expressed as follows:°

f(x,y)==Oif(rcose,rsine)=O§f(gcose,gsine)=O;f(r,rt)=0§>f(y,yx)=0

¢ C. B. GrLavas, <On Geometrical Equivalence and on a Certain Group of Plane
Curves», Proceedings of the Academy of Athens, 35 (1960), p. 120.
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An immediate conclusion is that the curve f(x,y)=0 is finally trans-
formed to the curve f(y,xy)=0 by a series of transformations. One can go
directly from the first equation to the last by putting y and yx in f(x,y)=0
for x and y respectively. The converse is applied for f(y,xy)=0. If f(yxy)=
=0 is a known curve or very easy to trace, then the problem is reduced
to transforming geometrically f(y,xy)=0 to f(x,y)=0.

Let be given the point A(x,y) of the curve f(y,xy)=0 (Fig. 3). Its
geometrically corresponding in the system (rt) is found if we drop the
perpendicular AM from A on Ox axis and join I to M. On the perpendicu-
lar from O on IM we take OB=r=MA=y. Hence we find the point B(rt)
which has cathetic coordinates OG=g and 9. To find the geometrically
corresponding to B from the system (g,6) to (r,8) we take OC=r=0G=g.
But the curve f(rcose,rsing)=0 is exactly the same with the original
f(x,y)=0. Hence by this process one can go from the curve f(y,yx)=0 to
the original f(x,y)=0.

Example 3.1. Trace the curve y’—xy-+1=0. According to the pre-
vious discussion we must substitute in this equation x and y for y and xy

Fig. 3.1.
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respectively. Thus we get the equation x’—y-+1=0, which represents a
well known curve, ie. a parabola with its vertex at I (0,1) and symmetri-
cal with respect to Oy axis. For the geometrical transformation of our pa-
rabola to the required curve, it is enough to find first the corresponding
branch of the curve to the branch IPQ of the parabola. It is easily seen, by
following the reverse process to the one described in the previous section
3, that to the point I of the parabola there corresponds the infinite point
of the curve on Ox axis.

Also the infinite point of the parabola corresponds to the infinite po-
int of the curve. Now take the point P of the parabola and draw the line
OP. On Ox axis we take a segment equal to OP and from the end of this
segment we draw a perpendicular line on OP intersecting at R. From I
we draw perpendicular on OP and from its intersection with Ox axis we
raise a perpendicular on this axis. If we take on this perpendicular a seg-
ment equal to OR, then P’ is the point of the curve corresponding to the
point P of the parabola.

We observe that the parabola y=x® is an asymptote line of the para-
bola x* —y-+1=0. But to the parabola y=x’ there corresponds another a-
symptote line of our curve which we can find if we substitute in the lat-
ter equation y and xy for x and y respectively. Thus we get xy=y? or
y(x—y)=0. This gives y=0 and y=x as asymptote lines of our curve,
which is true. Also to the tangent line y=1 atI(0,1) of y=x’+41 there must
correspond as tangent the line xy=1 at the point determined by y=0
and xy=1, ie. at the infinite point of Ox axis. But xy=1 is the rectangu-
lar hyperbola being an asymptote to our curve along the Ox axis.

Example 3.2. Trace the curve x*+y=2x. Putting in this equation y
and xy for x and y respectively we take y(y’+x—2)=0, which con-
sists of two curves, y=0, and y’-+x—2=0. Both are well known and easy
to construct. In order to transform geometrically these curves to the ori-
ginal one x*+y=2x, we must apply the process from A through B to C
(Fig. 3). It is immediately found that y=0 is transformed to the origin O
(Fig. 3.2). The parabola y*+x —2=0 has its vertex A (2,0) on Ox axis and
intersects with Oy axis at the points B(0,V/ 2 ) and B(0,—V 2). It is e-
nough to transform only the branch ABC above Ox axis. This gives one
branch of the curve under tracing, the other omne being symmetrical to it
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with respect to the origin.

The point A is transformed to the origin O, while the point B to By
By the help of a few only points we see that the branch APB of our pa-
rabola is transformed to ORB, of our curve. Also BC goes to B,C,. The
rest of the tracing is much easier for OR ‘B, and B,C, are symmetrical to
ORB, and B,C, respectively. Note also that to the tangent x=2 or xy=2y

praeeaasfse
.

Big. 3.2,

of the parabola there must correspond the tangent line y=2x of the
curve, which is easily checked to be correct. Finally to the asymptote
parabola y’=—x to our parabola there must correspond the asymptote cu-
bic y=-—x* of our curve. This asymptote shows the direction of the infi-
nite branch to our curve in the third and fourth quadrants.

Example 3.3. Trace the curve y=x-+x* This final example will be a
combination of the methods of sections 2 and 3. The given equation is

written —Z =x-+x’. Then putting % =t we transform analytically the o-

riginally given equation to t=x-x® in the (x,t) system of coordinates. But
the geometrically equivalent of the latter in the system (x,y) is y=x-+x*
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Applying the transformation of section 3 we substitute xy and y for y and
x respectively. Thus get xy=y-+y® or y(x—y—1)=0. This relation consists
of the two equations y=0 and x—y—1=0, both of which represent well
known lines.

-~

Fig. 3.3.2

We shall not go into details for tracing the original curve. It is
enough to state that to trace the geometrically equivalent of y=0 and

ALV_}

B(xt)
A(l,l})
[
. by ==
O N ™M

Pig. 3. 3b.

x —y—1=0, which is the curve y=x-+x* we must follow the process from A
through B to C of Figure 3. The axis y=0 is transformed to O and the
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straight line MN of Figure 3.3a to the parabola y=x-x* MN is transfor-
med to PLO while parts MM’, NN to the branches OR,PQ of the parabo-
la respectively. The next step is to transform the parabola to the curve
y=x’4-x* which is exactly the original curve. This means that we must
be able to transform a point A(x,y) to B(x,t) (Fig. 3.3b). From A we drop
the perpendicular AN on Ox axis and take OM=NA=y and we draw the
line IM. If from O we draw a line perpendicular on IM we find B as the
intersection of this perpendicular with NA. Evidently the coordinates of B
are x and t and of course we have x=x and y=t.

The problem now is to transform geometrically the parabola QPOR
(Fig. 3.3¢) to the original curve. This can be done by following the process

b Y
'EI
B
R 2 4 R b
\‘ I ;
N 4
e 2
i | T
S PINS .
T @)
QI
Fig. 3.3¢:

from A to B of Figure 3.3b. PLO of the parabola is transformed to PL’'O
of our curve, while the two branches PO and OR to the branches PQ’,
OR’ respectively. It is not difficult to see that to the tangent line y=x to
our parabola there corresponds the tangent parabola y=x to our
curve. This shows that our curve is tangent also at the origin O to the
Ox axis. By this example we see that the problem of tracing the given
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curve is finally reduced to the one of tracing just a straight line.

Summary and Remarks. In this paper a new method is presented for
curve tracing. The central aim of this method is to reduce a given curve
to another which is known or easy to trace. This «model> curve constitu-
tes the basis to trace the original curve by a finite number of geometrical
steps. In conclusion the proposed method has the following characteristic
advantages:

1. Using the model curve as a guide it only requires the transfor-
mation of a few basic points of that curve, giving therefore quick results:

2. It does not generally need the use of the Calculus or Analytic Ge-
ometry or the performance of calculations.

3. The properties of the model curve, properly translated, may con-
tribute to the discovery of the corresponding ones to the original curve.

4. It presents many possibilities for further research by an ingenious
combination of transformations through geometrically equivalent coordi-
nate systems.

The realization of the last point 4, however, depends upon the ori-
ginal form of a given equation of an unknown curve as well as upon the
possibility of using mainly geometrically equivalent coordinate systems to
obtain a suitable model curve. These restrictions point to the need of inve-
stigation to increase the area of its application. Especially the discovery
of other substitutions of the type of section 3 is very desirable.

FLEPWT A3 ]

‘Qc¢ yvwotdy, dxv dbo &Ewdoerg, Exmeppaouévor elg S0 didpopx cusThHRATK
cuvTteTaywévawy, dlvavtor va petatpamoly f mix elc Ty &Adnv Pdoer Tomwy peta-
oYNEATIOROD MeTald TGV cusTREATwY TobTwy, TéTe ai Efowoe adTar waplGT@HGL
wloy ol Ty adTNy *apwddlay, elg Thy omolav dviicTouxolv ddo Sikpopor dvaAuTixad
oxéoeic. 'Bv towdty mepumtdoet ai EEiodaeig Tiig xopmbhng yapaxtnpilovrar g &-
vaduTinidg icodlvopor.

Eig mponyoupévny dvaxolvwow dietumddn 4§ deyn tdv yewpetpunds i30duva-
pov xapmiiov (Hoaxuxa tis *Axadnuias " A9nvar, 32 (1957), 6. 122-124). Kax’
adrny plae xod M «xdTh &vaduTien oyéotg, dvapepopévn elg 300 JLAPOPX GUG TARATX
cuvTteTay uévewy, TapsTd duxpdpoug xapmilas. Adtar elvan yewpeTpinée loodvvapor (1
petaTeérpor), &v Omdpyy A dUVaTITVS YEWURETEIOD pETAOYMUATIONOY THe b eic
Thy &My, "Exer %37 deuxd9, 6ti v0 vedeutalov EExprdTon Ex Tig dmdpfewg yewpe-
Tpudic looduvapiag petald Tdv elg Exdotny mepimTwWoY Y ENGLLOTOLOLEEVWY GUGTY -
UXTWY GUVTETRY LEVWY.
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Abo susthpata (ay, By) xol (s, Ba) slvar yewpetpde loodlvapa, &v xadi-
cToctot duveety dix memepaspévou aprdpot Edxdedelowv yewpeTpiméy xatacxeudy
petBacig € Evog omuelou Gplopévou o Tob Evog cuoTHpaTog eic Aho Gpolwe Hmo
Tob &Ahou nal &v aty=P; xal oy=0R,.

El¢ mhv dvaxofvwowy tabtyy yiveton ) wapovsiuog pide véag pedddouv yapd-
Eewg xapmbilwy Sk THe Epappoydic xuplwe T dpxfic TOV YEwUETOWES l60DUVE-
pwv xapmdilov. "Av § Elowoig ola,, B)=0 wdc mpdc ydpabw xapmidne, Exmeppo-
opéung elg T6 oloTrpa cuvtetaypwbvay (x1, By), Yeaed olxs, B2)=0 elg ©0 yewpe-
Toixdg loodlvapov Tob mpdTov cloTnpa (x2, Ba), TéTe f Tedevtalx &Eicwoic mapt-
ot xoepumldny YewpeTpinds loodbvapoy Tig wewTne. TAy fi xapmddn abty, Suvapévy
va B xal wpdTumog 7 6d3MYdg xapmwbhy, Tuyydvy v& elve Yvwory 4 elxohog mpoc
xopabw, Téte dx Tadtng xadtoTatar Suvath duk THe wpovewopbvng pedddou F xdk-
pabic THg dpyFic dyvdaTOL RAUTOAG ik TETWEPXGPEVOL GpLT oD YEwpETOXEBY Xox-
TXOREVDV.

‘H mapovstasic T3¢ véag Tabtne meddSouv yiverar el dvo mepumrdioeic pete mwo-
paderypatov. Elg thy wpdtmy meplntwow yenoiponoobvrar Sbo, &ve elg thy Seuté-
pay TEPLGGETEPX THY dU0 cusThpaTa cuvteTaypévwy. H ydeakic Tie dpoywmiic xaumd-
g dmoutel &v Yével TOV YEWMETOMOV UETAGYMNUXTIOLOV SMywv onpelwy THg 631yol,
wolhedl 32 Idiétnveg THg TeheuTalag, HTig TUYXAVEL YVwETY XAXpmwOAN, rxTXAAAAWC
Epumveudpevan, 63nYoly elg v avaxdludyy xxl SwTdmwow &vrioTolywy id0TATWY
¢ dpyeiic. To Tedevtatov ormetleTan elg T0 yeyovde, 6Tt «yewpeTpxdg iooddvapor
xopmilot  €xouv xowag Exefvag The IdibtyTae, aitvec elve 7O wpoidv TEY idlwv
avaluTixdy mwpdEewy Eml THe xowdc TobTwy EEwsdoswe® (BA. IHoaxwxa tijc "Axa-
Snulas *Adnvév, 32 (1957), o. 126).

Ta wheovextipata Tig wpoTewopévng uedddou mpog ydpaly raxpmdlwy elvor T&
dxdhouda : (1). M Bdow thv 63nydv dranveiton 6 petaoynuatiopwds Ehaylotou dpt-
Fpod onpetwy TadTng weds xkexEv THe dpyinFic xoepmOING, B¢ wpordTTEL Ex THY dido-
pévov mopaderypdTwy. Elvar 6dev f pédodoc Tayeix. (2). Adv maploratar dvdyxn yom-
cwpomoricewg THs ~Avadvtindic Newpetplog 4 Tob Aapopinod Aoyiopod % éxteléocwe
&Ny Smoroyiopdy, de cupBalver ele FMhae peddSove yapdfewe xapmilwy. (3). Al
1di6tnTes THe mwpotlmou xapmding 6dnyoly elg Thy &vaxddudi iSoThTwY THC ZeyL-
xii¢ Towdtng. Kot (4). “H mpotewopévy uéBodoc, de 2x tiic ploede tne, mapovodlet
wolh&g SuvaTdTnTog mexTaoewe eic sdplTepoy Tedlov Epappoydiv.

"Axpiédg My Tob dvwtépw Tedeutalov yapaxTeloTIX0U T TwPoTEWOUEVY pédo-
dog mepiéyer T& oméppata mepatéow Epelvig Sk THY avaxdhudy véwy GuvduxGpGY
YEWPRETOXGG i00OUVA WY GUGTNLATOY GUVTETXYMEVWY Otk v& Yperoipomorndody 6g
Gpyava avaywydis xapmilwv elg dwhovotépag poppde, N Suvapévev va yopoydolbv
Baoer T@BY OTapyY0LGEHY SUVATOTHTWY.
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MA®HMATIKA—Une méthode de comparaison et ses applications,
par D. Markovitch*, Beograd. ‘Avexowvadn Um0 tod Axadnuoinod x.

Kovor. I[Taraiodvvov.

1. ’idée et le mode de comparaison.

La comparaison comme notion et méthode de raisonnement est
trés fréquente dans la vie, presque générale. On la rencontre trés souvent a
des conséquences et & des conclusions diverses déduites en comparant deux
situations par leur similitude ou bien par leur contraste. En mathémati-
ques tant plus, on rencontre la comparaison dans toute sa généralité et
comme notion et comme méthode. Il suffit de mentionner par exem-
ple que chaque relation mathématique regardée comme notion, n’est
qu'une comparaison. Il est naturel qu'une classification concréte dans cet
ensemble est possible pour déterminer de plus prés le caractére ou 'espéce
de la comparaison. Comme nous connaissons on compare les éléments par
Pordre, par la grandeur, par la position mutuelle etc. On peut trouver des
exemples mathématiques o1 la comparaison n’est pas seulement la notion,
mais aussi et la méthode de laquelle proviennent les conclusions.

On envisage un ensemble d’expressions, autrement un ensemble de
formes (au sens mathématique). On suppose que parmi eux il existe au
moins une forme qui posséde une ou plusieurs propriétés. Elle sert alors
comme la forme typique, le modéle, plus court comme le type. L’accommo-
dement d’'une élément quelconque de 'ensemble 4 ce type fait, que les pro-
priétés apartenant au type se transportent immédiatement sur I’élément
accomodé. Dans un ensemble de formes il est possible d’avoir plusieurs

*D. MARKOVITCH, M£BoSog suyxpiceng &l Epappoyal adrig.



