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poulos™®. >Averowvordn two tod “Axadnuairod x. "OY. ITviaowvod.

1. Introduction. The purpose of this note is to give a realization
to coproducts in the category of noncommutative algebras, a fact which
on the other hand implies its cocompleteness, and to extend certain well
known results for the commutative case [1], [3] to the noncommutative
one, by constructing an appropriate tensor product of algebras. In this
way, it is pointed out that this new tensor product algebra behaves, in
generally, in the same manner as the usual one in the special case that
the ingredient algebras are commutative, in which case the said (tensor
product) algebras actually coincide within an isomorphism.

The motivation to the present study was a realization of the usual
tensor product of two algebras given in [6], the results reported in the
follgwing being obtained in an attempt to put previous results into a
more general setting as an application of the technique developed in [6],
[5] with respect to the universal construction, as well as the limit pro-
cess. Thus, the structure of tensor algebras over R-modules (resp. of free
algebras over sets) is studied and a canonical decomposition of these
algebras is obtained.

A more detailed exposition and the proofs of the results presented
herein will be given elsewhere [7], [8]. Further applications along the
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lines of this note to certain topological algebras will also be consi-
dered in [9].

2. Weakly multiplicative bilinear maps and tensor products.
The category Al of algebras we are dealing with in the sequel is that of
(linear) associative, unitary, not (necessarily) commutative ones over a
fixed commutative ring R with an identity.

We start with the definition of a class of bilinear maps among
R-algebras, which is of fundamental importance in what follows:

Definition 2.1. Let E,, E, and F be three R -algebras with identities
ey, ey and e respectively. Then, a map f from the Cartesian product E, X E,
into F is called a weakly multiplicative bilinear map (abbreviated to w.m.b.
map) if the following two conditions are satisfied :

i) The partial maps f, from E, into F, for x= 1,2, sending every
x, EE) on f(x,, e;) and every xy € Ey on f (e, x,) respectively, are morphisms
of unitary algebras.

it) The multiplication = on F factorizes [ in the sence that the relation

f=mno(f1 X f3) holds true.

One may view the w.m.b. maps of a fixed pair (E;, E;) of R-alge-
bras together with the range algebra as the objects of a category of
pointed algebras, denoted by Al(E,, E,). Indeed, if (F, f) and (G, g) are
two objects in AI(E,, E,) then a morphism h:(F, f) > (G, g) is a homo-
morphism (purely algebraically) h:F—> G such that furthermore, we
have g = hof. This category gives rise to a universal problem, the reso-
lution of which is given in the following:

Theorem 2.2. (Existence Theorem). For any two R-algebras E, and E,
there always exists an initial object in the respective category Al(E;, E,).

Clearly, an initial object is unique within an isomorphism. The fol-
lowing definition is therefore legitimate :

Definition 2.3. An initial object in AL(E,, E,) is called the tensor
product of E, by E, and it is denoted by (E;® E,, t). Moreover, the arguments
T« of T, for x=1, 2, are called the canonical morphisms.

We remark, however, that the R-algebra E; ® E, is constructed as
the quotient of the free R-algebra (LA (E; X Ep),®) based on the set
E; X Es, modulo its 2-sided ideal M (E;, E,) generated by certain expres-
sions of elements ¢ (%, %), for all (%, %) € E; X E,, these expressions
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being subjected to the respective conditions to those of Definition 2.1,
while the tensor map t is defined as the composition of the canonical
injection ¢ with the canonical epimorphism p of LA (E; X Es;) onto
E,® E, (cf. also [6]).

Now, let (E’, ') denote the usual tensor product of the R-algebras
E, and E, that is, E’ stands for the tensor product of the R-modules
underlying to the given R-algebras equipped with the argumentwise
multiplication, and t" for the canonical bilinear map [1]. Then, the con-
nection of these two tensor product algebras is given in the following:

Theorem 2.4. There exists a unique epimorphism j of E,® E, onto E’
such that v = jor. Moreover, if the factor algebras involved are commutative,
then j is an isomorphism.

Thus, in contrast to the category Alc of commutative R-algebras,
where there exists just one tensor product, in the category Al there exist
two different ones, the usual tensor product and a second one, as the
latter is defined in Definition 2.3. Henceforth, the term tensor product
will refer to Definition 2. 3, unless otherwise specified.

3. Coproducts and Colimits in the category Al. One of the
more notable consequences of Definition 2.1 and Theorem 2. 2 is the next
Proposition, formulating the basic relation referring to morphisms between
R-algebras, w.m.b. maps and the tensor product, which on the other hand
is the extension of a well known property [1] to the noncommutative
case.

Proposition 3.1. Let E;, E; and F be any three R-algebras and let
(E,®E,, t) be the tensor product of E, by E,. Then we have

Mor (El) F) X Mor (Eg, F) =B (E]_ X Eg, F) ==Mor (E1 ® Eg, F)

within an isomorphism, where B(E, X E,, F) stands for the set of the w.m.b.
maps from E, X E, into F.

In view of this result the triple (E; ® E,, 15, t5) is exactly the copro-
duct of E; and E, in Al Our primary objective is now to give an exten-
sion of the above situation to any (not necessarily finite) family of
R-algebras. For this purpose, we first observe that the tensor product
defined is, as well as the usual one, commutative and associative, so that
it can be extended to every finite family of R-algebras. Moreover, let
{E; | iEI} be an infinite family of R-algebras and denote by E, the tensor
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product algebra corresponding to some finite subject a of I. Then the
system {Eu :Tpa| is inductive, the direct limit of which being by definition
the tensor product algebra of the family [1], [5].

We are now in a position to state the main result of this paper,
which specializes to a well known theorem for the commutative case. [3]

Theorem 3.2. Tensor products are the coproducts in the category Al of

noncommutative R-algebras.

The proof of this theorem makes use of the extension to every finite
family of R-algebras of Proposition 3.1, as well as the property that the
set of morphisms from a direct limit R-algebra E into any R-algebra F is
isomorphic to the inverse limit of the respective sets of morphisms of the
factors [5], [10] and related facts (cf. also [4], p. 208).

Next, since Al is a category with difference cokernels [11], the pre-

ceding theorem implies.

Theorem 3.3. The category Al of noncommutative R -algebras is co-
complete.
Corollary 3.4. The category Rng of noncommutative unitary rings is

cocomplete.

According to the general construction of the colimit of a diagram
over an abstract category [11], this one of a diagram F over Al is con-
structed as the quotient of the tensor product (: coproduct) algebra of the
respective system of R-algebras, by one of its 2-sided ideal i.e., the ideal
generated by the union of the images of the R-algebras of the diagram
into the tensor product algebra under certain appropriate maps, the ca-

nonical «injections» being obtained as the obvious compositions.

4, Structure theorems and applications We wish now to state
the next theorem regarding to the structure of the tensor R-algebra 7'(U)
on a given R-module U, in the case the latter is the colimit of a dia-
gram F over the category Mod of R-modules, the proof of which rests
upon the well known property that left adjoint functors are cocontinuous
(: preserve colimits) [10]. We denote by T the left adjoint functor from
Mod to Al assigning to every R-module U the tensor R-algebra T (U)
on U [4].

Theorem 4.1. Let X be a diagram scheme, let F:2—> Mod be a dia-
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gram and let (lim F, o ), (lim ToF, orox) be the colimits of the corresponding
—> —

diagrams in Mod and Al respectively. Then, there exists a unique isomorphism

J from LimToF onto T(lim F) such that the following diagram
— —>

Pr(r(a))
T(F(A)) v » LimT F

m
TPp(a)’ [ J
T(1inF)

commautes for all A€ ObY, where T (or)) stands for the tensorial extension

of the respective canonical linear map.

In particular, if the category ¥ is discrete then one gets from the
foregoing theorem a canonical decomposition of the tensor R-algebra on
a direct sum R-module, as the tensor product algebra of the tensor alge-
bras on the direct summand R-modules. On the other hand, in the spe-
cial case that the R-modules under consideration are free on some sets,
in which case the respective tensor R-algebras are also free on the same
sets [2], then one derives analogous canonical decomposition of free R-alge-
bras and recaptures a previous result in [6] for the commutative case and
the usual tensor product.

We conclude this paper with the formulation of two applications
of Theorem 4.1. Thus, we have:

1. Every tensor R-algebra T (U) on a R-module U is isomorphic to
the inductive limit of its finitely generated admissible subalgebras.

2. Every mixed tensor algebra on a vector space V [2] has a repre-
sentation as the tensor product algebra T (V)® T (V*), where V* stands
for the dual vector space of V, a fact which on the other hand explains
the factorization of any «geometric mixed tensor» to a covariant and a

contravariant one.

NEPIARYIX

Eic miv doyaciav taltnv Emrvyydveror S tilg xatacxeviic natailfiiov

TAvUoTI®oU yIvouévov GAyefodv moayuatomoinoig xal eig v xatnyoolav T®V Ut
10Lg S
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(vat” évdyxnv) peradetndv Ghysfodv tdv ouv-ywouévov, 1 Gmole meOg Tolg
dAhotg ouvendyetol xal TV ovumAnedtnra tiic xatnyoeias tavtne. ‘Exiong &mi-
toygdvetar 1 éméxtactg tiig loyvog xal elg v meolntowoty t@V ui petadenndy
k) ~ 7 ~ C k] ~ k] A 0 93 e\ c ¥
GhyeBodv mootdoswy YVwotdv GOg toyvovedv eic Ty mepimtwowy xad’ ijv al dhye-
Boar elvar peradetixal. Otto Swumiotoltar Gt TO VEOV TAVUGTIROY YIVOUEVOY GU-

’ - ’ 2 £l ~ c \ & ;- 2 \ € ~ c 3
neoupéoetar &v yéver £E Toov nakdg GOg 10 ovvndeg, el 10 omoiov ai dhyeBoal -
napdyovies eivar petadenxal. Ilodg tovtolg diepeuvartan 7 perald tod véou xal
100 cuviidoug TavveTxod ywvouévou oyéolg ol dmodeixvietar 6Tt al dvo avtal
gvvolar ovumtimrovy (g moog loopogpionov) elg v megintwowy, %o’ v ai dhye-
Boar - mapdyovreg sivor uetadstixal.

Ev téher (¢ dpaopoyn pehetdrar 1) down) tdv tovvetv®v ahyefodv Eml

dedopévou mootvmov xal drarvmotrar Fedonua tagastdocws TV Ghyefodv TovToV.
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