PART A

1. INTRODUCTION

Many physical phenomena are due to the motion of energy, matter, electricity,
etc. from one to other points of space with respect to matter distributed in the
neighbourhood. This motion takes place on different scales in nature. The diffusion
of the light across the intergalactic matter or in a Wilson chamber at the moment
of the expansion; the transmission of accoustical waves through ionized gases or
saturated vapors; the propagation of matter in the form of an aerosol; the diffusion
of gamma quanta or neutrons through matter and others are examples of motions
characterizing the transport phenomena. There are fundamental differences in
the description of these transport phenomena deriving from the predominant phy-
sical mechanism according to which the transport takes place. We have for example:

(i) free transfer with no collisions neither between the particles or radiation quanta
to be described nor between them and some other matter stationarily distri-
buted in the same region of the space;

(ii) transfer with collisions between the particles or photons to be described and
the non-moving matter distributed in the same region of the space and

(iii) transfer in which binary (or n-ary) collisions between the particles take place.
In cases (i) and (ii), since cither there is no matter other than the free diffusing
particles or it has a given constant distribution in space, the equation for the des-
cription of the transport phenomena is linear with respect to the distribution function.
In the case (iii) the transport equation is manifestly non-linear due to the colli-
sions between the diffusing particles.

These differences are expressed in the transport equation by the form of the
scattering kernel, entering the equation. In mathematical terms, if the kernel depends
on the distribution of the particles to be described, then the phenomena are des-
cribed by a non-linear equation.

It is a fundamental assumption of transport theory that all these phenomena
associated with clouds of particles are described to a sufficient precision by the

Boltzmann equation (1.1) in its general form

(0 +0-V 4+2-V') vy (x,0,t) =] (v, y). (1.1)

In Eq. (1.1) \y(;, G, t) is the distribution function evaluated in the cell dx3duddt
around the 3-dimensional space point, ;, the 3-dimensional velocity space point

=
v, and the time instant t.
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On the left side of Eq. (1.1) we have defined

- 3 = 3
V-V=2X0idxi ; a-V = I ajdy (1.2)

1=1 i=1

where a(x, v, t) is the force per unit mass acting on the particles at the point (x, {;, t)
just defined.
On the right side we have the collision integral defined by the expression (1.3)

> >

] (\V, \1’1 ) = /l \V (Xa b,, t) "’1 (X) U,h t)

> > - =

—y (%, 0, t) ¥ (X, 0, 1)] .

- > -

W (v, v'; vy, J’l) dv"?dvidu’y, (1.3)

where W (v, v'; vy, v,') is the scattering matrix assuring conservation of energy and
momentum during the collision process. The collision integral as defined in Eq.
(1.3) takes account only of binary collisions. Thus the degree of non-linearity equals
two. Eq. (1.1) was constructed phenomenologically by L. Boltzmann in the year
1872 and has since then been for long time the basis of the theory of gases. The
validity of this equation was the subject of detailed discussions (I - 6). It can in
fact be derived from the Liouville theorem

N = -
[0t + Z (v.V +a-V')]y =0 ; N=number of particles. (1.4)
n=1

The conditions necessary for the derivation of Eq. (1.1) from Eq. (1.4) are phy-
sically not always easily realisable.

These conditions consist mainly in the explicit assumption that

— A function F,(z,, z,) is replaced by the product of two other functions F,(z,) -

Fy (2,).

— Only binary collisions are considered.

— F;, F,’ change slowly.

— A complete chaos characterizes the velocities of the particles.

The details of the derivation are given by Grad (ref. 3) and others. The know-
ledge of the distribution function allows us to calculate a series of quantities chara-
cterizing the properties of the system, e.g., diffusion coefficients, viscosity, specific
heat, velocity distribution, mean velocity, pressure, temperature, etc.

There is to date no method for the construction of the general closed form so-
lution to Eq. (1.1).
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The most effective methods to find approximate distribution functions of suffi-
cient precision are those of Chapman-Enskog (2) and of Grad (3). Exact parti-
cular distribution functions satisfying Eq. (1.1) exist, e.g. the Maxwell-Boltzmann
distribution functions, known since longer than Eq. (1.1) and describing a gas of
particles in a uniform state:

o | X . mv?
W=n <2nkT )3/ P [ 2kT] (1.3)

where k is the Boltzmann constant, T is the temperature and m is the mass of the
particles. n, is a normalization constant. The non-uniform distribution function

m O\, m . '
V=1, <-2'7t7k7T ).;/2 exp { ~ okT V2420 (yu,—xv,)) { (1.6)

where v = (v}, vy, V3), X = (X, y, z) and ® is a constant. This distribution function
is valid in the absence of forces (2) and describes a rotating gas. The non-uniform
distribution functions

y+ = neexp + A0 - 2Ax) (1.7)

where X is a constant describes also a rotational motion valid in the presence of

Kaufmann force (7), :1, and satisfies also the Liouville equation rigorously.

All these functions are examples of distribution functions satisfying the non-
linear Boltzmann equation and may have applications in the linear transport
theory. Thus, for example, Eq. (1.5) finds an important application in calculating
the Doppler effect on the neutron resonance cross section.

The linearized form of the Boltzmann equation is obtained from Eq. (1.1) by
convenient integrations under certain approximating assumptions in the collision
term. In fact according to the definition of the scattering matrix the integral

S, 0, ) W(x, U)W (0, U ; oy, vy )do3dvide? (1.8)

gives the product of the distribution functions by the total cross section multiplied

by the velocity, v - o¢(v), where y; is supposed to be independent of x and repre-
senting particles with fixed distribution in x-space other than those to be described
by the distribution function to be found. Proceeding in an analogous way for the
term with positive sign in j(y, y;) we get the expression:

> - - >

fK(U, UI)W(XS Yy, t)dl)'?, (19)
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o
where K(v, v;) is the scattering kernel for collisions between particles distributed

according to \y(;, v, t) and particles fixed in space.
Combining results of Eqs. (1.3), (1.8 - 1.9) we get the linear Boltzmann equation

[6c+0-V4v.0c0)]y &0, 1) = fK(lS, v) v (x. v, t)dvs.  (1.10)

For details concerning the operations on \V(\; v 0-1, 0-1’) leading to Eq. (1.10)
see, for example Waldmann (6) and Case and Zweifel (8). The properties and
solutions of Eq. (1.10) occupy an enormous volume of the physical literature (9 - 20)
developed mainly during the two last decades or so.

Historically, first the approximation methods were developed, e.g., the Fermi age
theory (21) or the Placzek theory (22) in connection with neutron distributions.
Today there exists an enormous number of approximation methods. We shall not
review them but shall give a few recent references (23 - 37).

After a time of recognition of the real difficulties in obtaining precise practical
distribution functions and the appearance of large capacity electronic computers
the numerical methods gained considerable importance. These may be subdivided
broadly into statistical methods (38 - 67) and direct attempts to solve the Boltzmann
equation or some of its approximations (68 - 102). To the approximation methods
belong also a set of solutions, the so-called synthetical, (103 - 105) in which the pro-
blem is simplified by considering only a part of its dimensions the rest being treated
either numerically or with some kind of approximation and combining appropriate-
ly the final results. To the approximation methods belong, although not generally,
also some iterative methods (106 - 118) of which some correspond to the resolvent
expansion. Various varieties of the variational method have also been developed and
adopted to the linear Boltzmann equation (119 - 127).

Perturbation methods (128 - 130) have also found some application but to some
limited extent.

An important part of transport theory is based on the invariant imbedding pro-
cedure developed originally by Ambarzumian (131). This approach so important
for the theoretical understanding of some transport aspects (132 - 136) has induced
a rather extensive literature. Extensive application in transport theory find also
using the integral transforms (137 - 159). The Laplace transformation is very useful
in time-dependent problems, while Fourier transformations are usually applied with
respect to the spatial variables in infinite media. Other types of integral transforms
are not of general interest in transport theory.

The methods of lincar analysis have found in recent years important applications
in connection with the Boltzmann equation. They make possible the formal study
of the spectral properties (160 - 179). An important question is the one regarding
the problem of the existence of a smallest eigenvalue arising in time-dependent
problems involving pulsed sources in systems of small spatial extent. Using linear
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analysis Albertoni and Montanini (180) were able to prove a theorem according to
which there is no lower limit to the eigenvalue if the linear spatial extent of the
system tends to zero (181 - 185).

It is not the purpose of the present section to dwell on all the above methods.
The interested reader is referred for more extensive literature to the report of
Lathrop and W.L. Hendry; K.D. Lathrop; S. Vantervoort; and J. Wooten;
LASL, June 1970 (182p), (186).

In addition several of them make use of expansion of the distribution function
in terms of certain systems of orthogonal functions (e.g. spherical harmonics) and,
therefore, they have the limitations characterizing them in particular with respect
to the satisfaction of boundary conditions. Instead, it is proposed to compare our
method with the principal known methods and stress the differences and their com-
plementarity. We shall restrict, therefore, the comparison of our method with
those methods, which are of considerably general character and find a sufficiently
wide application in the physics of the linear transport without being derivates of
other more fundamental methods. The general problem of the linear transport
theory consists in finding exact solutions to Eq. (1.10) satisfying given boundary
and initial conditions in a space of given dimensions and in the three dimensional
velocity space. Despite the apparent simplicity of Eq. (1.10) in view mainly of its
linearity, there is still no unique method for obtaining the desired solutions of the
general transport problem. Thus many different particular methods have been
developed.

Methodically, the approximate methods were mainly of two different types.
Either they neglected the variation of the distribution function in one or more
dimensions or else they transformed Eq. (1.10) in a differential equation with res-
pect to the relevant variables.

In this way the various diffusion approximations were obtained in the form of
second-order-partial differential equations. These kinds of approximate equations
shall not be considered here at all.

In what follows in this section we shall give a short account of a couple of esta-
blished methods selected according the criteria just described. Thus we shall have
to compare our results with those of

a) the spherical harmonics method,
b) the normal approach of Case,

c¢) the harmonic polynomials’ approach of Birkhoff and Shumays.

a) Spherical Harmonics

We shall consider first the equations of the spherical harmonics approximation.
This will be done for simplicity in a space of one dimension. In addition we shall
consider here the time-independent situation, because the time can easily be inte-
grated out by one dimensional Laplace transformation.
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Upon writing for the distribution the series representation

o 2n+l
V(x,2z) = £ T ya(x)Palz) , (1.11)
n-Q 2

with Py(z) the Legendre polynomials, we get for the case of isotropic scattering the
spherical harmonics equations in the form:

1
Oxvy(x) + ? Vo(x) =0

2 1
3 ' ax\lfz(x) + 3 ax‘l’o(x) =0

3 2
"5 Oxys(x) + *5 Ixy,(x) = 0,

where wn(x) =/ dQy(x,z)P,(z) . (1.12)

To demonstrate the difference between the spherical harmonics representation, Eq.
(I.11) and the method to be developed in this paper let us write y(x, z) with the
help of the polynomials Sy(x, z) to be given in this work (see Def. III, 1° 5°):

a—XxX
Vi(x,2) =% qn|Sn(x-a,z) - (-z)Pe- z | ;2z>0 (1.13)
n=o0
and
V- (x,2) = 3 pnSn (x-b,z) ; z<O0. (1.14)

n=0

Inserting Eqgs. (1.13 - 1.14) into the transport equation we get:

0 el )\_ oo
X qn -*()‘(md)“ =~ 9 X [Va(xa)dqn + Wn(x-b)pn] (1.15)
n=o : n-o
o b A =
$ 5 Lxh,i) ~ 5 £ [Va(ea)an + Wa(xb)pa], - (L16)
n=o0 ¢ n=o0

where V,, and W, are defined in Def. IV.
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From Egs. (1.11) and (1.13) we see that if we consider, for example, the boundary
condition

Wa;2) =0 3§ z>0 (Ll 7

(i) Eq. (1.11) does not satisfy the boundary condition, Eq. (1.17), for any finite
value of n, while Eq. (1.13) satisfies this boundary condition termwise.

(i1) Egs. (1.11) are coupled differential equations, while Eqgs. (1.15) and (1.16)
yield coupled algebraic equations, if we equate to zero coefficients of equal
X-powers.

(iii) The secular equation of the system, Eqs. (1.15-1.16), yields the spectral
equation for the determination of the eigenvalues A.

These features observed in the case of isotropic scattering are strongly accentuated

in the other more complicated cases of anisotropic scattering and stratified systems.

b) Normal Mode Approach

It wasin 1960 that a fundamental paper by Case(187)appeared. This paper opened
up in fact a real avenue leading to the discovery of unexpected properties of the
Boltzmann equation in one space dimension. In subsequent papers Case and others
(188 - 191) have succeeded in proving a number of important theoremsin the cases
of isotropic as well as anisotropic scattering.

This new approach developed so rapidly that only a few years later a book based
on it could appear (8) collecting the most important developments. The main
idea characteristic to this approach derives from the ansatz

X

V(x, z) = oy (z)e v (1.18)

and is related to the use of a distribution theoretical property (192) implying that

from (v-z)oy(z) = ---CQ\—’— it follows that
cv
W) = Pl + MVE-D) (1.19)

where A(v) is a conveniently chosen function and §(x) is the Dirac delta distribution-
One then uses the fact that either ve[-1, 1] orvg[-1, 1] .

If vg [-1, 1], the normalization of ¢y(z) leads to the condition

cv v+ 1
s s ] 1.20
5 ln( ) . ( )

v-—-1
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from which the two discrete eigenvalues, +v,, follow as functions of the parameter c.

If ve[-1, 1], the normalization allows to determine the function A(v) as

1

cv dz
}\,(V) =]~ 2‘ -V—Z “ (1.21)

]

By defining A(v) one obtains that for every ve[-1, 1] Eq. (1.21) is satisfied and
consequently [—1, 1] delimits the continuum spectrum of eigenvalues of the Boltz-
mann equation, provided the ansatz, Eq. (1.18), is adopted.

We wish now to indicate briefly how the singular integral equation arises to
which reduces solving the Boltzmann equation. It has been proved that the two
eigenvalues +v, and the segment [-1, 1] define a complete set of eigenvalues and
corresponding eigenfunctions, denoted by PFv, (z) and ¢y(z). The completeness
theorem assures the existence of the representation of a given boundary function

y(z) :

1
v(z) = apsy (2) + Po-v (2) + f A(v)@y(z)dv. (1.22)
-1

The unknown quantities in Eq. (1.22) are a, B, and A(v). This Eq. (1.22) is
singular because the kernel ¢,(z) is a singular function of v.

The theory of Eq. (1.22) has been completely developed by Case and Zweifel
(8) and others and there exist in fact no problems with respect to solving Eq. (1.22).
The same may be said also for the anisotropic scattering case.

Let us next consider the energy dependent kernel. This case has been investi-
gated first by Bednarz and Mika (193).

Their method introduces a new variable, v, defined by v = zI(E), where z is
the cosine of the scattering angle and 1(E) is the energy dependent mean free
path. By introducing a new integration set, M(v), such that the energy E belongs
toit, EEM(v) for v€[-1, 1] if 1(E) > |v |, they write the Boltzmann equation in the
form:

1
(vAx +1)y(x,0,E) -:fdb de’K(U,E,;O,E')\y(x,t’),E') (1:23)
-1 M(v)
If one again uses the ansatz

X

\V(X’UaE) = (pv(U,E)(;V (1‘24)
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one gets after multiplication of Eq. (1.23) by K(v,E;0,E) and integration over v
and E’ the equation

1
dv’
H(v,0,E) +v fu_v fdE’K(_u,F;v’,E')H(v,u',E')

i M%)
de'K(u,E;U',E')x(v,E'), (1.25)
M(v)
1
H(v,0,E) = f do JdE'(pv(u',E')K(o,E;u’,E’) (1.26)
1 M)

and A(v,E) is a function related to H(v,v,E).

Now it is obvious that the determination of the distribution function ¢ (v, E)
according to
vH(v,0,E)

V-U

oy(0,E) = P - + A(v,E)8(v-v) (1.27)

requires the knowledge of H(v,v,E). Consequently Eq. (1.25) is a singular integral
equation for the determination of H(v,u,E). A comparison of Eq. (1.25) with Eq.
(1.19) reveals the degree of generalisation of the first. In addition it is observed
that the definition of H(v,u,E) is directly based on the assumption that the kernel
K(v,E;v,E") is L% This assumption excludes, for example, the applicability of
this method to the case of cold neutrons in condensed matter. Because in this
case the kernel is in general not L? (163).

¢) Burkhoff’s Method

An important new development to the understanding of the properties of the
linear Boltzmann equation appeared with a paper by Birkhoff and Shumays (195).
In that paper it was shown explicitly that if specific assumptions about the integra-

bility of the distribution function y(x,0), were made, e.g.,

Ofdx}x S[dgkp&) | 2w, (1.28)
f j f (x,0ld(X »)dQ<°° (1.29)

Q x/x

and
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where  ¢(x) = f dQy(x,0), (1.30)
Q

then polynomial solutions could be obtained. More rigorously the fundamental
theorem stated and proved by the above authors, was as follows: Any function
harmonic on R and satisfying the integrability conditions given in Eqs. (1.29) -
(1.30) is a solution to the integral equation

o0

o(x) = fdxe-xf dQo(x—xu). (1.31)
0 Q

This equation is, of course, equivalent to the integro-differential Boltzmann
equation with isotropic scattering kernel.

=

Explicit polynomial solutions, y(x,v), were given for example in the isotropic
scattering case and in three dimensional space in the form

v(x,0) = xyz — [xy{ + yzn] + 2[xn{ + y{& + zEn] - 6EnL; (1.32)

with corresponding integral (p(;) = xyz. In Eq. (1.32) we have defined = (x,y,2]
and v = [E,n,]. It is obvious that x being a vector in the three dimensional space,
;€R3, W(;,l_;), as given by Eq. (1.32), cannot satisfy boundary conditions of physical

interest. Due to this fact Birkhoff continued his researches and shortly later published
another paper (196) extending considerably the results of ref. (195).

The extension consists in the use of functions satisfying the Helmholtz equation
instead of harmonic polynomials satisfying the Laplace equation.

The main theorem runs as follows:

Let (p(;) be any solution of the Helmholtz equation V29 + A¢ = 0 in RP(b-l)

for which e Tg(x) is integrable. Then ¢ satifies the transport equation
ox) = o f die ™ f a0 (-r0) (1.33)
0

with ¢ related to A by the equation:

c=VI+A/[F(1/2,p/2;A/141A); (A>0)
=1/F(1/2,1,1,p/2;-1); (- 1<A<0), (1.34)
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where F is the hypergeometric function. Birkhoff and Shumays proceed then in the

formulation of the solution, y(x) in the forms:

Y(x) = Zanjn(kr)Sn(3,0) ; (A = k20) (1.35)

and

W(x) = Zanin(kr)Sn(0,0) ; (A =-k*>-1), (1.36)

where S;(0,9) are special angular functions and j, and i, are appropriate Besscl
functions (196).

From Egs. (1.35) - (1.36) one can directly assess the extent, to which boundary
conditions like Eq. (1.17) may be satisfied for continuously changing variables 0
and ¢.

As stated in the introduction of ref. 196 the above solutions may be used as
approximations to actual neutron distributions.

A number of theorems for time-dependent distributions are proved, all concern-
ing situations of an infinitely extended system, where the problem of boundary
conditions is simple. The above examples (subsections a, b, ¢) of analytical methods,
give a rough idea of the different stages of development of the linear transport
theory until recently. The impression is clearly, that this field of the theoretic
investigation is still an open one and that further analytical methods are highly

desirable.

d. Introduction and Notation to the Present Method

The purpose of what follows is to present a new approach for the treatment of
the linear Boltzmann equation in one space dimension. It puts in the foreground
the existence and the utility of the polynomial solutions.

The practical importance of the new polynomials lies in that the particular
combination of the independent variables induced by the structure of the transport
equation reveals new properties and implies rapid convergence of the rigorous
solution in the series representation and in physical systems of finite extension.

This approach based largely on the structural properties of the Boltzmann equat-
ion might well be termed the structural approach. The basic idea underlying the
structural approach is that the functions representing the solution of a physical pro-
blem should be as much simpler as the structure of the equation governing it is
taken into account in constructing the solution. As such properties are considered in
connection with our problem here the following:

(i) Analytical structural properties
(i1) Spectral properties of the operators involved

(iii) Transformation properties of the equation.
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To make this introductory discussion more specific the notation to be used
throughout the present work is first giveu.

Definition 1.

10 The values of x for which Eq. (1.32) is studied will lie in the subset, A, of R!
such that

x€[a,b]=A; 0O<ca<b<o,
la, b[ = A

20 The angular variable z is such that

z€E[-1,1] =B,
z€10,1] = B,
z€[-1,0[=B.,

2€[-1,1]- =B+ = B—{0}

30 The scaling transformation z -z’ = p - z will be frequently applied.

In this case the corresponding sets become:
A — A = [pa, pb],
A'— A* = ]pa, pbl,
BB =[-p, pl,
B, — B, =0, p],
B_—> B_= [-p, 0],
B'— B'= [-p, p]".
We propose to investigate the properties of the equation

z0xVY (X, v, z) +o¢(v)Y(x,v,2z) = kfdu'fdz'K(u, v';z,z)y(x,v,2) (1.87)
) B

and its solutions under various particular circumstances, where the kernel will in
general be defined by

L

K(v,v'52,2) = ¥ g (u, 2)he (5, 2) .
1=1
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Following the aforementioned fundamental aspects it was possible to derive re-
sults of very far reaching simplicity and to easily prove new important properties
of the Boltzmann equation. As an example it may be mentioned that the solution
of the Boltzmann equation is represented by a superposition of very simple poly-
nomials (197) S, (x—a,z) and S, (x-b,z) as well as exponentials of the form
exp (-X»~— a_) (-z)n and exp <ﬂ> (—z)n with coeflicients determined from the

- z
solution of an algebraic system of equations, of which the determinant is the spectral
equation for the determination of the eigenvalues A.
The polynomials S,(§, z) have the form

Su (6,7) = (~7)0en (- 2} (1.38)
where ep(x) is the sum of the n -+ 1 first terms of the expansion of exp(x): One of
the remarkable properties of the polynomials S,(x-s,z); (s = a, b) is that they
are transformed to a simple z — independent term by the operator z - dx + 1, i.e.
(198 - 199),

2+ By + )8y (x—a, 2] = (x““)", (1.39)

n!

where a = a for zEB and o = b for zEB..

This property gives rise to a series of consequences of which the algebraization
of the approach seems to be the most important. Since the polynomials S, depend
on the differences x —a, x - b, it turns out that linear superposition of these po-

: . . X — 0 " 3
lynomials together with the exponentials ( -z)Pexp (——-—) exhibit translational
Z
invariance on the x-axis. These superpositions remain still invariant against trans-
lations even when inhomogeneous Dirichlet boundary conditions are applied pro-
vided the imposed boundary functions are translationally invariant.
Moreover, owing to the homogeneity

Sn (AE, Az) = AnS;, (€, 2) (1.40)
and  exp (— %) = exp <—E) (1.41)

the Boltzmann equation is invariant against simultaneous scaling transformations
of the type Px:x —X = px and P;:z — Z = pz, a fact justifying the introduction
of the tilded sets in Def. I.

If in the above scaling transformations (Pyx and P;)A is equal to — 1, they become
the parity transformations; under the simultaneous parity transformations Py, Pz, Py
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the solutions of the Boltzmann equation satisfying homogeneous Dirichlet boundary
conditions are invariant.

PxP,Pry(x, 2) = y(x, 2) . (1.42)

These are some examples of structural properties. Concerning the continuity
properties of the solutions y(x, z) of the Boltzmann equation the fact should be
pointed out that they are uniformly continuous everywhere on A x B:. This im-
portant property is shared by all derivatives with respect to both x and z of y(x, z)
as well as of its integral ¢(x). However, the uniform continuity of y(x, z) disappears
at the points (x = a, z = 0) and (x = b, z = 0). This circumstance forces us to
introduce some regularization procedure. Mathematical and physical arguments
suggest to use the prescriptions

a;z—>—+0

s (1.43)

lim  lim F(y(x, 2)); a;{
x>0 2> 40

but not inversely, where F(y) is any functional of the kinds occurring in this theory.
The mathematical motivation for the prescription given in Eq. (1.43) is the lack
of equivalence of the variables x and z with respect to the structure of Eq. (1.37).
In addition, taking the limits in the inverse order, i.e., lim lim F(y) is almost meaning-

0—>Z X—>a
less, because in a certain sense it would be equivalent to requiring the solutions of
the equation z - dxy(a, z) + y(a, z) = ¢(a), which does not make much sense. From
the physical point of view requiring lim lim is equivalent to requiring the flux

in the direction z = o, which in fact is neither observable (measure zero) nor is
its knowledge desirable. On the other hand, it is meaningless to include the case
z =0 at x =a, b in the boundary conditions, because the incoming flux in the
direction z = 0 does not influence in any way the system, for which Eq. (1.37) is
considered. On the other hand it is clear that the limits given by Eq. (1.43) have a
perfect physical meaning and lead to well defined results. These reasons made it
necessary to introduce and use the sets B.

The application of the prescriptions (1.43) makes the solutions y(x,z), their
integrals ¢(x) and all their derivatives regular everywhere on A x B'. The theo-
rems demonstrated previously enable us to prove and to generalize the integrability
assumption introduced recently (195 -196) for the generation of polynomial so-
lutions. These solutions being harmonic polynomials on the whole R? can possibly
be used to construct solutions satisfying prescribed boundary conditions.

The study of the spectral properties of the Boltzmann equation is greatly facili-
tated by the property of the streaming operator given by Eq. (1.39). It turns out
that in all cases examined, here the point spectrum is embedded in an annulus of
the A-plane having finite diameters.

In Sec. 2 we give a number of general theorems valid in the case of isotropic
kernel. In Sec. 3 the spectral properties and the kinds of occurring solutions in R?
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are investigated. The case of velocity-independent, anisotropic kernel is discussed
in Sec. 4, and the conditions are stated under which polynomial solutions exist.
Sec. 5 is an application of the theory to the case of step-wise varying physical pro-
perties of the system. It turns out in fact that each region of constant physical
properties can be treated separately if the adjacent regions are represented by the
appropriate boundary conditions. However, coupled equations arise for the deter-
mination of the constant coefficients. Sec. 6 is a generalization to the velocity-and
angle-dependent kernel. The most remarkable result is that the general solution
is represented by superpositions of constant-kernel solutions each of which has ve-
locity-independent coefficients. It turns out that in the case of degenerate kernels
the eigenvalues do not depend on the velocity.

Sec. 7 gives an introduction of the present approach to the many-dimensional
case. In Sect. 8 the particular case of a constant kernel is briefly discussed. Sect.
9 gives an example of application in the case of symmetrical convex systems. Finally,
in Sect. 10 the completeness aspect of the polynomials is discussed in conjunction
with representing any solution of the transport equation in terms of the proposed
polynomials.



PART B

2. GENERAL STRUCTURAL PROPERTIES — ISOTROPIC SCATTERING
In this section we shall give attention to the simplest case of the one-velocity

stationary equation with isotropic scattering in a homogeneous system. Therefore,
the Boltzmann equation takes the form

1
205y (X, 2) + y(x, z) = xfw(x, 2)dz’ . (2.1')
_1

It exhibits obviously besides translational invariance, x->x" = x + @, also form
invariance against simultaneous scaling transformations x—% = px, z—Z = pz.

Remark 1. If we introduce the tilded sets A, B, B, , B_, B- with p — A then equation
(2.1") takes the form

Zox y (x5)+w22—j\yxz 2 (2.1)
B

In this case we shall be speaking of the eigensets &; on which the various operations
with regard to Z are defined. In particular one is led to consider integrations
J vi(%, 2)dz, where y;j(X, Z) is the i-th eigenfunction of Eq. (2.1). For simplicity the
Si
tildes will be dropped confusion being avoided through the absence of the factor
A in Eq. (2.1).
Remark I1. The eigensets, &, are restricted to the domain of existence of solutions

of Eq. (2.1).

Definition 11.

Jo o) :=f‘\|1(x, il (2.2)
90 (x) - fwx, 2)dz (2.3)
B.

30 The boundary conditions at x = a and x = b will be defined by the functions
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V4 (z), y-(z) supposed to be finite and unique on B and B. respectively with
all their derivatives.

40 The integrals

Xt (%) = f vi(ze ©  dg, (2.4)
B
& =h
X (x) = f v(z)e °  do (2.5)
B-

exist for all x in A.

Theorem I. Let vy, (x,z) be a solution of Eq. (2.1) satisfying the boundary condi-
tions

v+ (a, z) = v (z); V(z|z€B4) (2.6)
and wy_(b, z) =vy_(z); (Vz]|zEB.) (2.7)

Let further ¢(x) be bounded on A with inf ¢(x) = L and sup ¢(x) = U. Then:

XxEA XEA
1o @(x) is differentiable (Vx|xEV).
20 y, (x,z) is uniformly differentiable with respect to both variables x and z
such that x€A and z€B-.

30 The derivatives of y (x,z) at x = a, b and z = 0 become also finite and unique,
if the conditions lim lim F(y(a, z)) and lim lim F(y_(x, z)) are imposed, where
x->b z->—0

x—>a z>+0
F(y) is any linear continuous functional of .

Proof: It follows directly from the transport equation that

V4 (x,2) =y (2)exp (—?‘ : ) + ﬂ(x')exp(— :i)—di : (2.8)
a
b
v- (%, 2) = v (2)exp (—"—b) =) w(x')exp(—’»‘fz—"f)%. (2.9)
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We first show that ¢(x) is continuous and differentiable (Vx| x€A). From Egs.
(2.8) - (2.9) we get by addition and integration over B the expression

© X—-a *z—wd

LN o(x e XXM gy +f\|/+ 2 dZ—}—j\y-(z)e % dz. (2.10)
t

B, B

—_—

>

1/A

The continuity behavior of ¢(x) will be studied on the assumption that y (z)
and y_(z) are such that their integrals in Eq. (2.10) are equal to the continuous and
differentiable functions x4 (x) and y-(x) respectively.

Let us suppose that ¢(x) has one discontinuity at x = x, with a saltus Cy = ¢(x, -+ 0)
— @(xo— 0). On approaching x, from above we have (200) in Eq. (2.10)

Xo— &

©
¢(x0+ €) :f%t* 'f@(x)e(x" X ey 4 f B = a)tdx'}
N X+ &
o XoT¢€
I/x xo—s

The third term is

1] o e appons) | oefu() w2

l/l x0—¢
= Cj; (212)
where LM, M <U,
OOd -
Ey(x) = [Se ™ (x3>0). (2.13)
1
Therefore,
@(xo+€) = Fa (Xo) + Fu (%) + 2+ (%) + x-(x°) + C%, (2.14)

where F, (x) and Fy (x) are defined by the first two integralsin Eq. (2.11). On
approaching x, from lower x-values we get similarly
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¢ (%o~ &) = Fa (x0) + Fo (x0) + %+ (%0) + x-(¥%0) + C, , (2.15)

s () m(2) o [on2)]]

From Eqs. (2.14) - (2.15) it follows that
i fip(xe-+a) - pls—8)] = 0

where

and the saltus is equal to zero contrary to the assumption.

Since x° was taken arbitrarily in A we conclude that ¢(x) cannot have disconti-
nuities provided X (x) and x-(x) are continuous. Now since ¢(x) is continuous and
{p(x) [exp(x — x')t— exp(x’ - X)t]} x=x = 0, the interchange of the integrations
f—dt- dx” and the differentiation L is allowed. Hence the right-hand side of Eq.

t X
(2.10) possesses a derivative for all x in A and therefore ¢(x) has a derivative at
all x in A. This proves 1°.

To prove 20 we introduce the new variable x” = x — z§ and write Eqgs. (2.8) - (2.9)
in the form

v(x7) - vilze * + f o(x-ag)e "dg; o= [LECDs (2.16)

Next we observe that for a given positive number &€ a number p >0 can be found
such that the inequality

| @(x + rcosb — (z — rsinB)&) — o(x —z§) | < €

holds true for r such that O<r<p and every 0 such that 0<0<2n. Hence, the
continuity of ¢(x) implies the uniform continuity of ¢(x —z£) and therefore the
following formulas hold true:

XK=

(i) oxy+(x,2) = [qu() \u+<)]—7'Z + f ~z§)e—éd§ (2.17)

[(Vz|2€B4)A(Vx|xEA)},

(i) B+ (%, 2) = [F=2 (v (2) — 9(a) + -diﬂ} g & o f otV

Zo dz

(x - 2E)@ °dE {(Az | 2€B+)A(Ax| XEA)}. (2.18)
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The expressions (i) and (ii) are finite and unique uniformly on A & B.
For zEB. we have similarly

_x-b (x-b)/z B
(iii) Oxy-(x, z) = : [o(b) —y_(z)]le % - f 0 £ (x—z&)eédé
0

Z

{(Vz|z€EB)A(Vx|x€EA)}, (2.17a)
: ) _ b (x-b) /Z 1 B
() Oay-7) = uL(Z)-w(b)—%-—%gfzz} e % d[ ' f<x..za>e Sae;
{(Vz|zEB)A(Vx | x€A)} . (2.18a)

The expressions (iii) and (iv) are finite and unique uniformly on A® B_.
Hence, the derivatives dxy .. (x, z) and 92y (X, z) exist uniformly on A® B.

and this proves 2°.
Furthermore, by applying the operation lim lim on Egs. (2.17a)-(2.18a) we get

X—>a z>-+o
0L (X, 2) | z=0 = (1) (x) ; (Vx| x€A) (2.17b)
02V, (X, 2) | z=0 = —9(1) (%) ; (Vx| x€EA) (2.18b)

The expressions in Eqs. (2.17b) - (2.18b) are according to 1° finite and unique

and this proves 3°.
Q.E.D.

Remark III. 1t follows immediately from Egs. (2.8)-(2.10) that vy, (x,z) and
¢(x) fall off exponentially for x—>oco. Therefore, the integrability assumption
(195 - 196) which is a particular case of Eq. (2.16) follows from the Boltzmann

equation itself.

Corollary 1. Eqgs. (2.17a) imply that

lim zdxy(x,z) = 0 ; (Vx|xEA"). (2.19)

x>0

Corollary II. From Eq. (2.19) it follows that

W&®=fdwm@
B

or v+ (x,0) = y_(x,0) (2.20)
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Theorem I1. The derivatives of any order of y(x,z); {(Vx|x€A)A(Vz|zEB)} with
respect to x are bounded and unique provided this is true for the derivatives of
any order, ¢™(x) of @(x); (Vx|x€EA).

Proof (by induction). dxy(x, z) is finite and unique for n = n,, where n, is any
positive integer. Then, 93 "'y (x, z) is finite and unique. From Eq. (2.1) we have

after multiplication by oy
zdy 'y (x, z) + Opw(x,z) = @™(x) ;20 . (2.21)

By putting n = n, we have immediately the proof of the assertion for n = n,,

because 93 'y(x, z) is the difference of finite and unique quantities. For n = 0
Eq. (2.1) satisfies the induction assumption (Vz | zEB.). The existence and uniqueness

of dyy(x,z) for z = 0 follows directly from Eq. (2.20) and the definition given in

Eq. (2.2).
Q.E.D.

Corollary 1. The converse of Theorem II is also true, i.e.,

{1 0%w(x, 2)| <0} - {| R0(x) | <o }.

It does not follow from Eq. (2.10) because the integrand of the first integral is
not uniformly continuous in x and t, and the differentiation of the integrals gives

rise to singularities at the boundaries x = a, b. jThe regularization of 9y y(x, z)
is obtained by Theorem I,3°; they are by construction finite.

Corollary II. From Eq. (2.1) and from Corollary I it follows that

n—1

y(x,z) = Eo (- 2z)VoM(x) + (- 2z)d%y(x, z), {(Vx|xEA)A(Vz|zEB)}. (2.22)

Corollary III. Theorem I and Theorem II, Corollary I imply that
2V (%,2) | z—g= (-)0n! ARy(x,z)|2-,. (2.28)

Corollary IV. We consider the identity (201):

oz 2 -0y o] = LTI anyxs) - sawixs), (2.24)
fv=2 V. (0, !

where s = zt and t€[ 0, 1 ]. By integrating Eq. (2.24) over t and omitting vanishing
sums we get
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1
v(x,2) =£ Fow(x2) ~o+f(ni"l-) f (1-)n1ayy(x,s)dt . (2.25)
0

From Corollary III we are allowed to equate the coefficients of equal powers of
z in Egs. (2.22) and (2.25).
By equating the last terms of Eqs. (2.22) and (2.24) we get the relation

;3}/\

1
wi__'f (1-1t) —105\'[()( s)dt, (2.26)
0

Multiplication of Eq. (2.1) by d; and appropriate iteration lead to the very
important relation

29x07¥ (X, z) + naxa',‘_'\u(x, z) = —07y¥(X, z). (2.27)

Repeated application of Eq. (2.27) leads to

Corollary 1V.

n—1 (_ z)V

y(x,0) = ¢ (=2} y(x, z) 4 | — ot Ax0"=y(x,2) (2.28)
v=0 V (n_ l) !

This is the expansion of y(x,z) in a Taylor series (n—>c ) at h = -z, and it results

from Eq. (2.27).

Theorem I11. Let y(x,z) and ¢(x) possess maxima at X = x, for z £ 0 and at x = x,
respectively. Then

10, "%, # X5
20, sign{dx¢(x) | x-x, } = —sign(z).

Remark IV. The value x,, at which the maximum of y(x,z) occurs, is in general
a function of z. Let call it z;, and therefore x; = x,(z,).

Proof: From zdxy(x,z) + ¥(x,z) = ¢(x) we have that x = x,(z,)

V(x1(21),21) = 0(x4(2)) - (2.29)
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On the other hand there holds

Zlail“l(xl) z,) = ‘P(l)(xl) . (2.30)

Since y(x,,z,) is a maximum, (1) (x,) # 0 for z, % 0 and this proves 1°. Further-
more, from the maximum assumption it follows that 03,y (x;,z,) <0 and we there-
fore have the validity of 20.

Corollary 1. At the particular point z, = 0 we have
o()(x) =0, x=x,0), (2.31)

i.e., the maximum of y(x,0) and of ¢(x) coincide.

Theorem IV. Let y(x, z) satisfy Eq. (2.1) {(Vx|x€A) A (Vz|z€EB)} and let B,
be the neighbourhood of z = 0. If dzy(x,z) (n=0,1,2,...) is decreasing for in-
creasing X€EA and fixed z€EB,, then dyy(x, z) is increasing for increasing zEB, and
fixed x€A, and vice-versa.

Proof: From Egs. (2.1) — (2.2) and (2.20) it follows that
By (x, 2) - O%w(x, 2) = ~zdly(x, ) (2.32)

and therefore z-! [d5y(x, z) — day(x, 0)] = — 0% "'y(x, z). The limit for z —> 0 defines

the derivative 9x(x,z) |z =0, i.e.,

aQW(xs Z) g a’,hy(x, 0) ‘

lirgl - s 7| =-a5Ty(x, 2) | 2= - (2.33)
Hence,

+02(A3Y (%, 2)) | 29 = :Fax(a:‘lf(x; z)) | z—o0 (2.34)

for: m =055 2, 5% 295% Q.E.D.

For certain classes of function y 4+ (x, z) and y_(x, z) the conditions for convergence
of the series in Eq. (2.22) are stated in

Theorem V. Let y ¢ (x, z) be a solution of Eq. (2.1) satisfying the boundary condition
V+(a, z) = y4(z), where y4 (z) is a polynomial of degree m. Let further vy (x, z)
possess of Taylor series expansion. Then, vy (x, z) is either a (double) polynomial
in z and x and satisfies the relations:

degzy + (x, z) = degxy+ (x, z) = degzy+(2), {(Vx|x€A)A(Vz]|zEB4)}

or its derivatives of order higher than m vanish at x = a.
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Proof: From Eq. (2.23) and by the hypothesis of existence of a power series ex-
pansion we have by Cauchy’s inequality

lim % %y (x, 2) | < lim 2% — 0, (2.35)

n>oo |11 nirool TD

where r is the convergence radius of the Taylor series representation of vy (z, x)
and M = sup sup y(x, z).

XxEA zEB+

By the uniqueness theorem for Taylor series the expansion in question is that
given by Theorem II, Corollary II for n = o, i.e.,

Vi (x,2) = I (=)¥2%W(x), {(VZEB4) A (Vx| xEA)}. (2.36)

v=0

This expansion must satisfy the boundary condition at x = a.
By assumption, y.(z) is given by

Vi(2) = Qo+ Q2+ covvneenns qmz" . (2.37)
From the boundary condition it follows that
oM@) =0 (Vv|v>m) . (2.38)
If Eq. (2.38) is satisfied identically, then @™ (x) = dw(x, z) |, o
Oxy-+(X, z) | =0 = 0, {(Vx|x€A) A (v>m)}. (2.39)
If Eq. (2.38) does not hold identically, then
O (%, 2) | Ren™= 0, {(¥V2|2EBL) A (v 5 m)}.

Therefore, there are certainly polynomial solutions of Eq. (2.1) or entire functions
satisfying the polynomial boundary condition of degree m and having either the
property expressed by Eq. (2.39) or

O (%, 2) | sma = 0, {(VZ | 2€B4) A (v > m)}, (2.40)

w4 (x,2) #0,{(Vx|a#x€EA) A (Az|zEB4) A (v > m)]. Q.E.D.
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3. EIGENFUNCTIONS AND EIGENVALUES

The lack of uniform continuity of y(x, z) forced us to use the prescription intro-
duced in Theorem I,30. This prescription, which is physically fully justified will
be now applied to exclude any ambiguity of the solution appearing at the point
(x =a, z=0) or (x=Db, z=0). One of the most important observations is that
the operator zdx 4 1 acting on functions {y(x, z)} of two variables transforms them
to the functions {¢(x)} depending only on one variable. This property is valid only
on a particular part of the spectral plane. This part of the spectrum and the corres-
ponding eigenfunctions will be determined presently. First is given

Definition I11.

10 The polynomials given below satisfy inhomogeneous Dirichlet boundary
conditions (198 - 199):

Vii(x,Z) = = AVqySn(x—a,2); {(Vx|x€A) A (Vz | zEB4)) (3.1)
and -

Wi(x,2) = T AWuSy(x=b, 2); {Vx, 2 | xEA | z€B. } (3.2)
1.e., o

Vit (a,2) = T Wgy(- 7)Y | (3.3)
and o

Vi(b,2) = E Npy(~ 7). (3.4)

20. Homogeneous Dirichlet boundary conditions satisfy the functions

[ zZ—a

Vi (x,z) = E ANqn |Sp(x-a,z)—(-z)Pe 2 ] ; {Vx,z | x€A, zEB+] (3.5)

and
" ( LB

VA(X, Z2) = E-X“pn Sp(x-b,z)—(—z)re 2 ]; {Vx,z | x€A, z€B-} (3.6)
1.5

Wi (a,2) = 0; (V2 |2€B4) (3.7)
and

ve.(b,2) = 0; (Vz| 2€B.) (3.8)
30, wa(x,2) = Vat (%, 2) + Va-(%, 2) (3.9)

40, i (x,2) = Ya(x, z) + v (x, 2). (3.10)
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Egs. (3.1) — (3.8) follow from the properties of the polynomials S.
Sn (0, 2) = (-2)"

B, 0 = x':
1 9

0xSn (X, 2) = Spy (X, 2)
Sh (Ax, Az) = A,S? (x, 2) .
50, A few examples of the polynomials are given:
S, (x,z) — 1
S, (x,z) =—-z+x

2

S, (x,2) = 22—zx+ —

21
o XX
S; (x,2) =-23+ 2% Y —i—3!
T x4

S, (x,2) = 22— 2%+ =i

o "1 T A

Definitions IV.

18 Wyl = atfs,,(x, 2z, (3.11)
B+

2 Wyn(x) = 3% f 8, (x, 2)dz, (3.12)
B.

30, Bkn(x) = al; [Vn(x) = Entse (x)] s (3.13)

40, Ykn(X) = a]; [Wn(x) = En+2(x)] s (3.14)

where
ood —xt
En(x) = Tte . (3.15)

1
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Remark V. Between Vin(x) and Wiy (x) hold the relations

Win( = x) = (= )1kViq(x); (0<k<n) (3.16)
and

V(x)on = Vn(x), (3.17)

Won(x) = Wp(x) . (3.18)

Theorem VI. yi(x, z) is a solution of the homogeneous Eq. (2.1) and satisfies in-
homogeneous Dirichlet boundary conditions. Then:

lo,  Corresponding to any degree, n, of ya(x,z) there is one and only one eigen-

value A = ; independent of n.

. 1 5 . s . v i
20, The solutions y,(x,z) are invariant against translations x—>x" = x + X, and
scaling transformations x—>x" = Ax, z—>z" = Az.

30.  The coeflicients {qn, pn|n = 0,1,2,....]} satisfy the consistency relations
n (b = a) v-k
=5 - ;k=0,1,2,.... 3.19
Pn . ka Gkt ( )

Proof: From Egs. (2.1) and (3.1) — (3.2) and from the properties of Sp(x,z) it
follows that solving Eq. (2.1) is equivalent to finding the solution of the algebraic
system of linear equations

Akqy = >_3k?»v { Vi, (0)q, + Wk, (a-b)p, | (3.20)
and

Akp, = A )ﬁ:kk"{Vkv(b—a)qv + Wk, (0)p, }; o<k n. (3.21)
From these equations we have at once
= v (b_a)v—k ¢
AMp, = Z A ] (3.22)

which is the consistency relation for Taylor expansions of ¢(x) at two different points
a and b. _ ;
Eq. (3.22) allows to diagonalize the determinant of the coefficients in Eqgs. (3.20) —
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(3.21) and in fact it can be used to eliminate Eq. (3.21). From Egs. (3.11) — (3.12)
and (3.20) - (3.22) we get the triangular matrix equation for {qy|n = 0, 1, .. .n}:

pM) q-o, (3.23)
where q is the column vector {qyq;. . . .qn}
and

(D(l))kkﬂ (7‘) . }‘Hl{)‘[vkkJ 1(0) + Z ( - )V'k Vkv(d)Cka] — Ok |} s (3-24)

dn-k
_|Ta-%); ° e
Skv = ;d=b-a
0 ¢ ksan

Now, the value of the triangular determinant in Eq. (3.23) equals the product of
the diagonal elements and, therefore,

det D (1) (A) =

(=1

(D)) = in] Ak(2A - 1) . (3.25)

o

In order that Eq. (3.23) has non-trivial solutions it is required that det D(1) = o
and therefore

Ak (20-1) =0,

o

=k

whence, since A = o is incompatible with Eq. (2.1), it follows that

A= 5 (3.26)
This proves 1°.

To prove 20 we merely observe that the polynomials S,(x—a, z), Sy(x - b, z)
depend on x only through the difference (x-a) or (x-b) and that the coeffi-
cients of the Eq. (3.23) depend also on (b-a). Furthermore, it is clear that a
scaling transformation multiplies x and z by p and A by p' and consequently
the roots of Eq. (3.25) are invariant.

This proves 20.
The proof of 30 is already given by Eq. (3.22).
Remark VI. It will be shown in Theorem XI that n can take only the values o or 1.

Theorem VII. Let vi(x,z) be given by Eq. (3.10), satisfy Eq. (2.1) and homo-
geneous Dirichlet boundary conditions. Then:
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1o, There is a countable infinite number of open eigensets & such that &+, =&

cé&';i >0, where & = U & is an open bounded set.

i=1

20, Corresponding to each complex eigenset & there is also its complex conjugate
& for which a solution of Eq. (2.1) exists.

30. Each real eigenset &° defines an eigenfunction of Eq. (2.1) with a positive
eigenvalue, A, satisfying the relation

A< e foralli,

where the positive numbers A and A are given by
h — inf { fixfdzvi(x, 2)vi(x, 2) [ (Sowd(x, ) (flayix, 2)) <1
L]

and

A= 1+ sup {fdzz [vi(b, 2)vi(b, 2) - vi(a, 2)yi(a, 2) ]}.

Proof:

1o, From Egs. (2,1), (3.5) - (3.6) it follows that in order that y2(x, z) be a solution,
the following equation must be satisfied;

D(1) A) Q = o, (3.27)

where the elements of the matrix D(1) (1) are given by

pMpy = kf,% [ABn~ags ] (3.28)

kn

and

Okn = Pkn+ (- )k % (- )Bkvbkn >

o

Q = (v(a, 0), ¥®(a,0), ... .. )- (3.29)
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The n-th component of Q is defined by

y®(a, 0) = lim lim d;y(x, z). (3.30)
In deriving Eq. (3.28) use was made of the structural property given in Eq.
(2.23) and also of the property

Bkn(8) = (-)"K yka(-§). (3.31)

For the Eq. (3.27) to have meaning it is necessary and sufficient that the following
limit of the N-th order determinant Dy(A) exists:

| lim Dn(2)(A) | = [ lim det Dn(2) (1) | = [ det D) (M) | < 0, (3.32)

N->o00 N->co

where Dy (2) (1) is the matrix obtained from D(2) (1) by omitting the rows and co-
lumns of order, N’, higher than N - 1.

The proof that the limit in Eq. (3.32) does indeed exist will not be given here (199) .

Based on the existence of this limit we can now study the eigenvalue spectrum
resulting from the solubility condition of Eq. (3.27) and prove 1°. With the help
of Eq. (3.28) we construct the determinant Dx(2)(1) and expand it in a polyno-
mial in powers of A.

In doing so we exclude the value A = o, which in fact is not an eigenvalue of Eq.
(2.1), because its structure changes for A = 0. Due to the structure of Eq. (3.28)
we can divide the 1-th column of Dn(2)(A) by A'; (1 =0, 1,2,...n). In this way
we get the polynomial

N
DN(}\.) = AN+ ‘DN(G. 09.1 @ @ e.N)—}\.NIEOPDN(G.O & & 9.1_1 o.j e'i'f‘l .. 0. N)
N o e L LT, o
+AN—1 2 " PDn(0.g. .. 0.5 0.0.44;5.. .05~ @j0j4;...0.5)
k=0

+ (=)Y ANHI=y Z__ PDn(0.g- - . 0.jy @.iB.itq. .. _9.j_1Ad.j R

o810 01 0n)+ (=¥ Dy (0@ 5. . .0.N) = 0. (3.33)

In Eq. (3.33) D (0. - 0.1 0i0ui - - .6.1-_16.,-6.j+1. 9. Do) 18 equal to the determi-
nant resulting from Dy (0.00.0., . .0.n) if we replace the i - th, J5ths s vnsas s I-th
columns by the @.j,d.j,8. respectively, where a.; is the column (&,idydsi. . . .Gnj).
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P is the “index-ordering”(202) operator acting on the column indices, whereby the
columns are considered as commuting objects. The summation extends over all

resulting different determinants. The quantities 0x, are defined by
Okn = (k!n!)-1 0y, . (3.34)

From Eq. (3.33) we see at once that the product of the n+- 1 roots is given by

N -

Py = 1 Ai = detn(Gikn) detn(Okp) - (3.35)

1=0

According to the analysis given earlier the right-hand side of Eq. (3.35) has a

limit for N— oo and therefore the set {Aj|1=1, 2,...} is bounded (199). Consequently,
there is at least an accumulation point Aco which may belong (Acc % 0) or may
not belong (Ao = 0) to the eigenvalue spectrum of Eq. (2.1).

From the definition of detn (dkp) it follows that

detn (Ggn) = ﬁ (v1)-2 (3.36)

o

and, therefore, by Eq. (3.35)

o Y g =L 7!
lim IT AV = lim dety (I(’ 9kn> s (8.87)

N->00 v=0 N->oo

! N
Since lim dety <% 9kn) = oo, Eq. (3.37) shows that IT AV —>c0 as N—>co and con-

N->oo v=o0
sequently Ax—> o asymptotically as N—>co. This implies the existence of at most
a finite number of eigenvalues Ay, satisfying the relation.

|[RedMmil> 1 s (m=1;2,...mp). (3.38)

o

This result allows us to construct the sets &'j = [ —Aj, Aj |* where the indicates

that the set has a hole at Aj = o, i.e. & = [ = Aj, o[U]o, Aj].
This proves 10,
The proof of 20 is now obvious.
To prove 3¢ let us write Eq. (2.1) for the two eigenfunctions y; and y; with

Ai 7= Aj. According to Egs. (3.5) - (3.6) and (3.10) we have

205 Vj(x, z) + Wj(x, 2) = Ajgj(x) (3.39)

3]
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and
z0x Vj(x, z) + vj(x, z) = Ajpj(x), (3.40)

where
— [dz Vi(x, z). (3.41)
B
From Egs. (3.39) - (3.41) it follows that

2 33fdzl;/dx yj(x, z)OxVj(X, z) =
i }\'j) {dX(pi(X)(pj(X) +deZZ [‘Vi (b’ Z)Wj(b’ Z) = Wi(aa Z)Wj(a’ 7)] (342)

Using the invariance of yj(x, z) against the transformations

’ Pyix ->%=-x

and b) Tx: x >x" =x- (; , (3.43)

a)

P,iz—>Z=-2

as well as the boundary conditions satisfied by wj, yj one easily verifies that

i3fdzz [ wi (b, 2)wj(b, z) — vi(a, z)yj(a, z)] = Gij > o. (3.44)
Hence,

2 [ dx [ dz [hoi(x) ~ wilx, 2)Iwi(x, 2) > 0~ ) S dxgi(x)ai(x) (3.45)
or

[ dx [(A; —f—kj)/Q(deZ\yi(x, z) (éfdzwj(x, z)) —deZ\yi(X, z)yj(x, z)] »o, (3.46)
whence

425 /2> A (3.47)

and

A = inf (Jdx [ dzyi(x, z)yj(x, 2) ) | Jdxei(x) <

On the other hand it follows from the inequality

dezuﬁ(x, 2)yj (x, z) < (deZWi(X, z)) (édeWj(X, z)), (3.48)
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which is valid for positive functions y; and yj, and from Eqs. (3.45) and (3.47),
upon taking the sup of Eq. (3.46) that
1

Mi+4) /2 1 +sup Gjj=A. (3.49)

Eqgs. (3.47) and (3.49) prove the assertion 3° of the theorem.

Remark VII. Eq. (3.49) is in agreement with Eq. (3.38) according to which some
eigenvalues A'm may be larger than unity.

Remark VIII. When v, yj are positive and the boundary conditions given in Egs.
(3.7) - (3.8) apply, then Gjj is a measure for the outflow through the boundaries

of the system.

Theorem VIII. Let &°, (8 ¢ &), be the set of real eigenvalues corresponding to the
eigenfunctions y? (x. z). The P, defined on &, (AES), together with the parity
transformation on the space A ® B leaves y*(x, z) invariant.

Proof: Let us apply on y(x,z) the translation transformation

Tx :x>X" =x-%;; x"= S 3 (3.50)

2

The transformed Eqs. (3.5) - (3.6) take then the form

" R
\Vi(x, z) = X Anqn |Sn(x+a,z)-(-2z)"e z J (3.51)
n=0
and
X—a
= 8 Wt e S
n=0
where now A =|[-a,a]= {—i, d} ; d=2a;
e, 2
Let us apply the transformation Pyp:A — A" = — A on y*(x, z). It follows that
& _%-+a
Pyan ,Sn (x+a,z)—(—z)e z J = A0 | Sy (x-a, —z) —zle z J (3.53)
and
X=a X-aj
Pyan [Sn (x-a, z) - (—z)"ew_EﬁJ = AN lSn (-x+a,—z)-zte  z J (3.54)
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Application of the transformations (3.43a) on Egs. (3.53) — (3.54) brings the right-
hand sides of them to

X —
PxPzP;J»"[Sn (x+ a,z) - (—z)ne 2z } = )»“[Sn (x—a,z) - (—z)"e_ z ]
and

X—a

PxPszkn[Sn (2=~ Lo 2 }:”[s,1(x+a,z) B ] (3.56)

One recognizes that Eqs. (3.55) - (3.56) are simply the interchanged brackets
of Egs. (3.51) - (3.52). Consequently,

PyP,PyAn(x, z) = yi(x, z). (3:57)

The structure of the matrices D(1) (1) and D(2) (A)determine largely the properties
of the solutions y*(x,z) and y%(x,z). Further specification of y'(x, z) is provided
by Theorem IX.

Theorem 1X. Let om(x) be a polynomial on A of degree m and y'(x,z) be a so-
lution of the equation

z20xV (X, z) + y(x, z) ={dz’w(x, z') + om(x) (3.58)

satisfying inhomogeneous boundary conditions of the Dirichlet type. Then:
lIo. n=o0or 1, if o?(x) =0
20, n=m, if m>o.

Proof: Let us consider first the case om(x) = o. Theorem V implies that y(2) (x, z)
is a polynomial and the matrix D(1) (1) has the form given by Eq. (3.24).

(=)
n-k+41
(3.12) — what is easily verified-that z (=)V Vyxk(d)eyn = (mn -k 4 1)L

v=k

Since Vip(d) = Vypk(d) and V(o) = we have from Egs. (3.11) -

It follows that
D()(A) = 0 ; k>n,

Din(DD(A) = an(20-1) ;k=n
and
An-+1
R W |

Din(1) () [1 3§ (-)n—k] sn>k, (3.59)
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or explicitly for A = 14 :

3 5
@l=T) 8 22 © 2B e Lis
3 5 n
4 6
0 sa@-lyE  2lg g
3 5
5
Dy =1 0 0 or@-1) o X,y M (3.60)
3 n-1
0 0 0 0 ... 0 An(2A-1)

The rank of the n-th order determinant of this type equals n -2 and Eq. (3.23)
should have at least one solution for each n>>o. However, due to the particular
inner structure of the determinant only the coefficients q, and q; remain arbitrary
while qy = o; v2>>2.  This proves l°.

To prove 20 let us write wm(x) in the form
m — v
il B i e (3.61)

and observe that n = m for the Eq. (3.56) to have solution. There are two distinct
cases: (i) om(x) is proportional to ¢(x) and (ii) ©m(x) is completely arbitrary.
If (i) is the case, there holds oym = AVkqy and Eq. (3.59) becomes

[ 0 k>n,
an (ZA-1+%) :k=n
Dim(D (M) = n-k+41 (3.62)
Ans1 L . ok i . kon.
n-k-+41

In this case there is still one A-value of Eq. (3.58) which is no longer A —

but rather

(3.63)
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The rank of the determinant remains the same (n - 2). Furthermore, there is a
solution only for n = m and for only m = o or 1. Therefore,

]qo; m = o

vi(x, z) = (3.64)

l Vit (% 2)+viT(x,2); m=1L
In case (ii) Eq. (3.23) is inhomogeneous while the determinant D(1) (1) has still
the form of Eq. (3.51). In this case there is a solution of Eq. (3.58) {vA|D(1)(1) 0}

| .
and in particular for A 5 % Furthermore, the degree of y!(x, z) satisfies the re-

lations

degxy!(x, z) = degzy'(x, z) = m. (3.65)

Remark 1X. Theorem IX assures the existence of polynomial solutions, of Eq.
(3.58) satisfying inhomogeneous Dirichlet boundary conditions. However, these
boundary conditions cannot be arbitrarily given, for {qy|v = 0, 1,2, ... m} are
the solutions of an algebraic system of equations. In case 19 the coefficients q, and
q, are arbitrary.

Remark X. In a class of physical problems application of mixed boundary condi-
tions is required. Mixed boundary conditions are defined as the linear sum of the
boundary conditions of the first and second kind. This case was treated earlier (199).

Theorem X. Let y(x, z) be a solution of Eq. (2.1) and let it satisfy the boundary
conditions

v(a,z) =yn(z) ; (Vz|zEB+)
and

y(b,z) =0 ;  (Vz|z€EB-).
Then:

1o. y(x, z) has the form

N o X-a
Vi(%,2) = T AqnSa(x-a,7) + 3 ann[sn(x.« a,z)-(-z)ne— | ;
n=o n=N+1
(Vz | z€B+)
) x—b
20, y_.(x, z) = Zj Apa| Sp(x— b, z) — (- z)he — . } ; (Vz|z€EB.).
30. The vector q = {q,/n=N+41, N+4+2, ...} isdetermined from the equation

D(2)(a; N)q = - Dy(A; qy, G - - -qn).
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40, The matrix D(2)(A; N) is derived from that given in Eq. (3.28) by omitting
the columns o, ..... N.
59, Dy(X; gy qp - - - qn) 1s a one-column matrix defined by

N
(Dy)k = Z k"ankn(d/Q)-

The proof is given in another place(199).

Fig. 7. Graphs of the angular distribution functions y + (x, z) and y—(x, z) for monodirectional surface
of unit strength on the plane x = 0. The characteristic value of the system is = 0.45 and d = 10 mip.
It is seen that the boundary conditions for both z > 0 and z < 0 are exactly satisfied.
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4. STRUCTURAL PROPERTIES IN ANISOTROPIC SCATTERING

In this section there will be considered Eq. (1.1) with a degenerate kernel. We

shall use the following

Definition V.

L
10 K(z,2') = £ 0; (2-2) ;L >0,
20 gx,2) ~ [dz'K(z,2)y(x 2)
L
=X Q. 26Q,(x) >0,
30 @g(x) — [dzzey(x, z) ,
B
40 @, (x) = [dzzey(x, z) .
B+t

Eq. (1.1) takes with the above definition the form

z0xV (X, z) +y(x,2) = X{de(z, z)y(x,2) .

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

A fundamental property of the solution of Eq. (4.5) is described by the theorem

which is given below without proof (203).

Theorem XI. Let y(x,z) be a solution of Eq. (4.5) satisfying the boundary condit-
ions y(a,z) = y4(z) and y(b, z) = y_(z), where y (z) are entire functions defined

on B, respectively. Then

1o {@.(x) [1=0,1,2, ... L} is differentiable {Vx | x€A} .

20 y(x, z) is uniformly differentiable with respect to both x and z

{(x|x€A) A (Vz|zEB")}.
From Theorem X a number of structural properties follow:

Corollary 1

0xP¢ (X) = E all—fEl+l (x—x )Pe(x")dx’ 4 (- )+ fEl (X" = X)@e(x")dx’

)Ly

T ) o (x) 5 (1= 0, 1,2, ... L),

(4.6)
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where Xe(X) = Xe+(X) + Xe-(X) and
Xe+ (X) = [ exp <_, = ) 7oy (z)dz (4.7)
1) = [ exp (- 'b) 2oy (z)dz (4.8)
Corollary 11.
liTo z0xy(x,z) = 0 ; (Vx| xEA*") (4.9)

Corollary I11.
¥(x, 0) = Apy(x) ; (Vx| xEA") (4.10)

Corollary 1V.

1 :
O 7)| = B ()7 (x) 5 (Vx| XEA") (+.11)
n=0,1,2, ...

Corollary V.

n—1 L
W% 7) = T (<) E az00(x) + (- 2)n03w(x, 7) (4.12)
v=0 1=0
n=1,2,
Corollary VI.
ﬂ:a:+l‘l’(X, z) ;=0 = F 0x02¥(X, 2) | x-0 4+ @;¢,M(x) ; (Vx| xEA " )- (4.13)

The proof of the above results is analogous to the respective results of Sec. 2.

Corollary VII. From Corollaries I - IV and VI one finds the expressions of the

moments @,(x) in terms of the derivatives d3y(x, z) | ,—0, i.e.

1
(P1<x) - (11 [aZ\V(X, Z) = ax‘V(X, Z)]Z’-O )

0a(X) = 17t O3y (x, z) — Ox02¥ (X, z) . (Vx| x€A*) etc. .

a,| 2! z=

Before proceeding to the determination of the eigenvalue spectrum of Eq. (4.5)
we shall establish an upper bound for the eigenvalue characterized by
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Theorem XII. Let yi(x,z), v (x,2) be solutions of Eq. (4.5) with the positive eigen-
values A;, Aj satisfying the boundary conditions vi(a,z) = 0; (Vz€B.) and vi(b,z) = 0;
(Vz | zEB.) with s = i, j, and let the quantities [ AP, B;; ) be defined by

A= f dx( fdzzeyi(x, 2)) (fdzze\u,-z(x, z)) 5 (4.14)
A B B
Bii :.[dxf\"iz(x: Z)W}"(X, Z)' (415)
A B
Let further the kernel K(z, z') satisfy the positivity condition

Ags(x, 2) = (K(z, ), v3(x, 2)) > 0. (4.16)
Then:

1o yi(x, z), wj(x,z) are semi-positive functions on A®B.

20 The eigenvalues Aj, A; satisfy the spectral relations
L » )
Ai 2 1 for T B,Aji > Bj respectively.
1-0

30 The spectrum, Ap, of the eigenvalues A, is a bounded set.

Proof. From Eq. (4.5) one deduces that

x—X'
- P g d ’
Vir(z) =hSe 7 gy(x,z) - ; {(VX|XEA) A (Vz|2€B,)) (4.17)
and
b _7x—x' ds’
Vii(x,z)=2Se z gx,2) ;‘ : { (Vx| XEA) A (Vz | zEB_) } (4.18)

From Eqs. (4.16) - (4.18) it follows that yi(x,z) is a semi-positive function on
A®B and satisfies the -boundary conditions, Eqs. (4.14) - (4.15). It is also

easily shown that yi(x, z) has the same property on A@B. To this end it suffices
to show that (Vx |x€EA)

(i) Vit (x,0) = yi (x,0) and
(i)  wi(x,0) >0.

From Eq. (4.17) it follows that

lm v, (x,z) = A ;fxﬁ(x = X)@o(X)dx" = Agy(x) (4.19)

z>+0
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and

b
lim y3-(x, z) = A/ 8(x" ~ x)@o(x)dx" = Apy(x).

z—0

Eqs. (4.17) - (4.18) prove assertion (i). The proof of (ii) follows immediately
from the condition in Eq. (4.16) for z = 0. Therefore,

vi(x,2z) > 0; { (Vx| x€EA) A (Vz|zEB) ).
Next we prove 2°. Let us write Eq. (4.5) for the eigenvalues A;, A;.
z0xVi(x, 2) +Vi(x, z) = Aigi(x, 2), (4.20)
z0x¥j(x, z) + yj(x, z) = Aigj(x, 2). (4.21)
From Eqs. (4.20) - (4.21) and from the symmetry of the system it follows that

Af dx {{dzwi(x, z)yj(x, z) - ?bi——Q‘_—ijf dzy;j(x, z)gi(x, z) } < 0. (4.22)

L
Since gi(x, z) = X Pezf@.i(x) with @.(x) given by Eq. (4.3), Eq. (4.22) can also
1-0

be written in the form

S k(S dawilx, 2wy, 7) — EY B B dazvis, 2)) ( dasewi(x, 2)) 1> 0.

(4.23)
Eq. (4.23) implies that
it > o (4.24)
Eo Be Ajj

and therefore for i = j the assertion 2° follows.

We have still to prove 3°. From the positivity condition, Eq. (4.16), and from
1o follows that
L
Jdx / dzgi(x, z)wj(x, z) = IE Be:[ dX(pei(x)ﬁf dzzey;j(x, z)
A B -

dx@ei (X) i (x)

Ii
I ™M
&
>\

L (]

_E BA (4.25)
1=0

> 0
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Consequently, the denominator in Eq. (4.24) is strictly positive. On the other
hand Bjj is a finite positive quantity. If we call I the index set and we define

Sl g o O
i€'p L \ (4.20)
ef\ii
1-0
and
. B;i B
ol £ g & (4.27)
o BeAii
1=0
then A <4 < A for all i€1.  From this result 30 follows. (4.28)
Q.E.D.

The notation of Def. IV is in the case of anisotropic scattering generalized in
the following

Definition VI.

X —ad
10, Bll:’n(x—d) = at‘l{J_\.Sn(x‘d>Z) — &y (~2z)e z ]Ze*‘f'dz (4.29)
_ d )
20- 'Ylkl;‘(x - b) — atf Lsn(x _ b,Z) . ETI (a.z)ne VA Ze+e dZ (4‘-30)
R

n-k [(n-k)! ; n
30, Ckn—{ (d/2)nk [(n-K)! 5 k<< (4.31)

6 :k>n

o
I
—

40, By — { (4.32)

Theorem XIII. Let y2(x,z) = y*, (x, z) + % (x,2) be a solution of Eq. (4.5) satisfying
the boundary conditions (n = 2

)
vi(d,z) = 0; (Vz|z€B,) (4.33)
and vi(b,z) = 0; (Vz|2EB_). (4.34)

Le.t furthtfrm.ore {vir(x,2) [1=0,1, 2, ...L} be a set of isotropic scattering
solutions satisfying boundary conditions of the same kind. Then:



DISTRIBUTION FUNCTIONS AND PROPERTIES OF THE BOLTZMANN EQUATION 59

lo. The two superpositions

L
Vi(x,z) = T aezeyii(x,z) ;{ (Vx| x€EA) A (Vz|z€EB,) ) (4.35)
1=0
and

L
Vvi(x,2) = T aezfyi (x,2z) ;{Vx|xEA) A (Vz|z€EB_))} (4.36)
1=0

are solutions of Eq. (4.5) provided at least one of the kernel coefficients {a, |1 =0,
1,2, ...L]} belongs to the set of eigenvalues of the supermatrix

n

% w 1 g
Dkn = | ®¢ Bkn + Zk Ykvbnk ‘Qn—kansee' . (4-37)

20, y2(x, z) satisfies homogeneous Dirichlet boundary conditions.

30. The series representing y?(x, z) are uniformly convergent on AX® B provided
laxy3(x, z) | < Cy(z)n!, where 0 Cy(z) <oo; (Vz|zEB). This theorem was proved
in ref. 190.

For n =1 Def. VI, 1o, 20 gives:

I N
Wk (%,7) = T a0 T qenz#Sn(x—d, 7) 5 (V2| 2€B,) (4.38)
1=0  n=0
I N
\vqu_.(x, 2)'="% 052 PiztSp(X =b;2) ; *(Vz'| ZEBL): (4.39)
1=0 n=0

These functions satisfy the conditions of the following

Theorem XIV. Let yn. (X, z) be polynomials of degree N satisfying Eq. (4.5) with
arbitrarily fixed kernel coefficients {a, |1 =0, 1,2, ...L} and the boundary condi-

tions

wa (0, 2) = i (2) 5 (Vz | 2€By) (4.40)
and

yn—(b, z) = y_(2) ; (Vz|2€B_), (4.41)
where y . (z) are polynomials of degree N and of definite parity (even or odd). Then:

1o, There exist particular x-independent solutions of even or odd parity and of
degree Lor L -1 (if Lor L -1 = even).
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20, There exist general solutions of degree N = 0 or 1 in x and L = 1, in z corres-
ponding to the eigenvalue A4 = 20° and to

Ay = [og+ a5 £ (05 + 0525 + 2/ (45a40,))'12] [160,40,/45] -

30. There exist no general solutions of degree N equal to or higher than 2.

Proof: From Egs. (4.5) and (4.38) - (4.39) it follows that

n e

L w I
lzo[xae(ﬁkn + ‘?k 'kacvn) _See’skn Jen = 0 (4’-42)

N
z
=1 =

n

fordd= 0, 1,2, .., Noand I' =012 . L.
On the other hand it follows from Def. VI that

Iy - _( —i__k . k < n
Pkn = {n-k et 1 ° (4.43a)
l 0 ukerssh
(_ )H—e'
2 i~ d)yn(d) — l“_ e (4.43b)
o 0 s k>0.

Let us first prove Io.

The system of Egs. (4.42) takes for N =0 and L>0 the form (AL-A"1)q =0
where 1 is the unit matrix of dimension L. Explicitly this equation reads:

Mea 0 2 g g 2oL o
3 L+4+1
20 20,

0 'gl =0 v~?3- 0 b,
20 0 i i g S8 201 .

3 3 L+3 : =0

(4.44)

L+1 L+3 L1 qL

where 6 = A1,
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It is seen that Eq. (4.44) breaks down into two uncoupled sets of homogeneous
equations. The characteristic equations from which the eigenvalues o follow are:

110...0 @ 0...0| 10...0 o 0...0 5 0..0
01 01
Ls . . Ls 8
olg4 16l E P|. . Jaolg=1 5 P 1
=0 |; 1 i7j=0 Qi
0ij 1
1
. . 1
[0 I ag; 0..01 " jj ;

| |
} .0
iO ...0ari0...0a;0..01

boovs Gl g g =1 ) (4.45)

with Lg=L;, Ly, ; L +Ly,=L +1 and

—)e+e
Oy = O 1,+( ) 4 esEl= O, l, 2, T UL (9 (446)

The sums in Eq. (4.45) extend over all possible values of column indices, while
the “index ordering” operator P puts the columns a.j, a.j etc. in their physical
order without change of the determinant sign. Since the element sets of each of
the determinants Ay; and Ap, differ in general, are different from each other too
the sets of the roots Ap, and Ap, of them. Consequently, there are in general no
equal eigenvalues and, therefore, the two sets of linear homogeneous equations
are incompatible for L>2. The incompatibility is resolved, if we assume that either
{qe=0|e=even}

or {gqe= 0]e = odd], i.e. we are left with either
(AL, -01)q@ =0 (4.47)

or

(AL, - 011)q© = 0, (4.48

of which the solubility conditions are again given by Eq. (4.45). This proves assert-
ion lo.
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To prove 29, let us introduce the following notation

A (0,00 AL(0,1) ... AL(O,N)
0 Ap(1,1) ... AL(1,N)
Dee’ ) =
Ll : 0 . , (4.49)
0 0 Ay (NN)
where
AL(k 1= V) = AL(k) n),
b (_)n—k+(_)e-l—e’
Ar(k,n), = 4.50
( L( 7n) e n—k+e+e'+l ( )
and A1(0,0)e = AL .

Next we consider the general case of Eq. (4.49): D - q = 0, where

ao 9 qN
§ = (Qogy ‘Caos »~~ALos 1 Dozs Doz #+ Ghits == GoNs QING = o5 LK)

Due to the definition given in Eq. (4.50) the diagonal elements of the super-
matrix D are equal to each other and consequently the requirement

(qu, qiNs - - 'qLN) == 1) lmphes
det AL(0,0) = det Ap(1,1) = ... det AL(N,N) = 0. (4.51)

From Eqs. (4.49), (4.50), (4.51) it follows that

AL(0,0)qo = AL(1,1)q; = ... = AL(N,N)gqn = 0, (4.52)

from which the vectors { G, |n =0, 1,...N} are determined up to their last com-
ponent, qr,. On the other hand the following additional conditions must be satisfied

AL<N - 13 N)qN = O; (a)
AL(N -2, N— 1)in_s +AL(N-2, N)qn 0, (6)

AL(0,1)§ + AL(0,2)F, + ...AL(O,N)gn = 0. (4.53)
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Now it is clear that Eq. (4.53a) is a condition on the elements of Ap(N - I,N),
which in general is not satisfied. It is observed however that the number of the
conditions in Eq. (4.53) is an increasing function of N. For N = 0 we have the case
10 of the theorem. For N = 1 we have just one condition, Eq. (4.53a), which reads
Ap (0,1)q; = 0. In this case the sought vector is q = { Go, G; } = { 900> 910> Go1> a1 } -
The condition Ap(0,1)d, = 0 is satisfied if we put L = 2.

* This is evident from the equations:

2. 2a
(209 — ©)qgo + ”3 2 20 — gl qu =0,

2a. 20
3' “qo” 4+ <?z - 0)Q2o+"5 L qu =Y, (4.54)
2a
(209 - )qqp + :_))”2 qu =0,
2a, 2
"qum + (;2 = G)q21 =0.

The solution is

20,
Boml M= T i fy= L
oo (324, o) 21
4oy0, 2(12 >
410 =1 7324, - 30) (20, - 0) 5 |
2a,

T g 5 : 4.55

o1 3(2a- ) 21 ( )

The eigenvalue corresponding to this solution is given by the expression

2 11/2
o 2 :
wr o g Lo
T (4.56)
0oy
45

}":l: -
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This proves 20.
The proof of 30 follows from the impossibility to satisfy Eqs. (4.52) - (4.53).

Q.E.D.
Remark XI. Theorem XIV states implicitly the conditions on which solutions of
degree N > 2 do exist. We have therefore

Corollary 1. Corresponding to each degree of the kernel, K(z, z’), there exist
particular sets of values of {a,|e = 0,1, ... L} for which there exist polynomials,
Yn(x, z), of degree L = N in x and in z which satisfy Eq. (4.5.). These particular
sets {ag|e=0,1, ... L} are the roots of the equations resulting from Egs. (4.53)
after elimination of the vectors { qy, , ... qn } with the help of Eqgs. (4.52).

Remark XII. Theorem XIV, Corollary I explain why polynomial approximation
in transport theory yield surprisingly satisfactory results. This happens when the
physical values of {a,| e =0, 1, ... L} are near the roots of Eqgs. (4.53).

Example: In case L. = N = 2 the condition for the existence of the solution y,(x, z)
is given by

) , (4.57)
where o = A1,

5. SYSTEMS WITH STEP-WISE CHANGING PROPERTIES

In this section an application is given of the simplest case represented by Eq.
(2.1). The properties of the system characterizing A are determined by the kernel
K and the total mean free-path.

Definition VII.
lo Ai = Ki = constant, is the kernel on A’®@B®B.

20 o is the total cross-section on Al

30 ai, bi are the limit points of the set Ai.

40  bi = gi+l; oi . bi =~ Gi+1 . qitl; cjai ==l Gibi = Bi.
50  wi(x, z) is the solution on Ai® B.

60 oi(x) =Af\|/i(x, z)dz.

7 x—>X=0¢°x.
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The solution pertaining to each Al of Def. VII is that given previously by Theo-
rem V (199), where now the boundary conditions are represented by non-vanishing
functions at the points ai and Pi.

For simplicity it will be assumed that the boundary conditions at the first ai(i = 1)
and at the last bi(i = I) are of the homogeneous Dirichlet type

wiol, 2) = 0; (Vz | ZEB.) , (5.1)
vl(Bl, z) = 0; (Vz|z€B_) . (5.2)

In all intermediate surfaces we shall have:
vi(Bi, z) = yitl(ait! z); {(i=12a,2, ... I-1) A(z€B)}. (5.3)
Due to the linearity of Eq. (2.1) each inhomogeneous boundary condition implies

the existence of two distinct contributions to the solution, i.e., the solutions on
Ai®B; (i= 1,1 (first and last Ai)) consist of three distinct parts.

Each part of the solution contains a set of infinitely many coefficients {q,', |n=0,
1, 2, ...]. Hence the solution on Ai ® B is identified by the following sets:

\V{|. (X, Z) <*’;—;> {q,l, |n= 09 13 23 sk } Z (54)

vl (%,2) (=) {pl, PLin=0,1,2 ...} (5.5)

The arrow “{=——)" expresses the equivalence relation, provided the kind of
boundary conditions at x = al, B! is given.

On Al ® B the solution is identified by

vi(x,2z) (< {q}, q.In=0,1,2,...} (5.6)

and
vi(x,z) (—=){pl, PLIn=0,1,2,...]. (5.7)
Every set Ai ® B being neither the first (i = 1) nor the last (i = I) has the follow-
ing solution:

vi(x,2) () {d, qiin=0,1,2 ...} (5.8)

and
yi(x,2z) (—=){pl, PiIn=0,1,2...}]. (5.9)

To simplify the presentation we shall make use of the notation



66 TTPATCMATEIAI THEX AKAAHMIAZ AOGHNON

B, {qi, qi, qi, qi} = 0 to represent the Boltzmann equation on Ai® B for
i 1, L. Ifi = 1, then we have owing to Egs. (5.4) - (5.7), B {q}, ¢*. p*} =0
andfori=1 &, {qlql pl}=0.

The boundary conditions at x = bi = ai*! and z€EB will be represented by
g Xi, Xi gitl gitlk — (0, If i = 1, I, then we shall have from Eqgs. (5.5) -
(5.7) g+ {q, q3 g2} = 0, C{q!, qi%, ql, p!} = O for zEB and
g__{p], 1319 P2’ 52} = 0, g—{PH, PI"I, PI =} 0 for z€B_.

From Egs. (5.4) - (5.9) it follows that we have 4 X (I-2) +2x3=4x1-2
sets of unknown coefficients. The number of equations for their determination is
as follows:

I equations of the type B,
| » » » » B
I-1 » Mo S

| T | » »  » ./

This gives again 4 X [ -2 equations. To obtain 4 x I -2 sets of equations
(each with an infinite number of equations) we equate coefficients of equal powers
of x or equivalently (since ¢i(x) has finite derivatives at all points of A*) for the
PB.{ }-type equation we put

05 (4T Pl Pi)xeri = 05 k= 0,1, 2, .5 i = 2FP (5.10)
For the &, { }-type equations we have similarly
alz(g:i:(xi: Xi3 Xir*la X-i+1}2=0 =0 5 k= Oa 1, 2: R (511)

Egs. (5.10) and (5.11) represent a linear homogeneous set of [ (4 X I - 2)x
infinite ] equations from which the unknown coefficients {qi, qi, pi,pi|i= 1,2,

.I,n=0,1,2, ...} can be determined. If we write D(A;1;I) for the matrix
of the above system of equations, then

det D(A;1;I) =0 (9:12)

is the solubility condition and the spectral equation of the problem. This is the
general straightforward solution of the problem.

We wish next to give a more elegant and simpler solution of the same problem.

*X =q for zEB+ and X = p for z€B_
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In this second procedure explicit use will be made of the structural properties of
the functions yi (x, z). To this end we write first v (x, z) for each Ai® B_.

_X;f}
vhi(x,z) — 3 <xl>nqé[sn<x—al,z>-<—z>ne z | (5.13)
n=0
. x—ﬁl]
yi(x,z) = % (M)"pi[sn(x—ﬁl,Z)-(—Z)“e Z
n=0
x - Bt
+yi(a2 z)e Z (5.14)
_xff}
vi(x,2) = £ (12)"q§[sn<x—a2,2)—(—Z)"e £
n=0
x —q?
Fyi(Bhz)e z (5:15)
_ X‘Bz}
Yo lx, z) = E; (kz)"pﬁ[sn(x— p2,z) — (-z)ne z
. (5.16)

*le}
vi(x,z) = £ (k‘)"qﬁ[sn(x -alz) - (-z)re 2
n=0
x-al
+y' B e 2 (5.17)
o
vi(x, a) = £ (U)"pﬁ[sn(x -Blz) - (-z)ne  Zz |° (5.18)

n=0

Next we observe that Ai are ordered on the x-axis in the natural order of the
indices {i}. Moreover, the factor y? (a% z) in Eq. (5.14) is given by the first sum in
Eq. (5.16) at x = a2,

Similar relations exist among the other equations. This parametrization of the
solutions makes disappear several of coefficients {q, p} and reduces the number of
equations for the determination of the remaining ones.
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Let us see more precisely how this runs.

The boundary condition satisfied by y' (x, z) at x = a'is an identity provided the

convention for taking limits is applied as given by Eq. (1.7). The boundary condi-
tion C.{q, % q2} becomes now & .{q', ¢ q'} = 0. In general, we have

C.idl, g, qi¥, gl =0, (5.19)
C_{pi, pit}, pi—, pi} = 0. (5.20)

Hence the number of equations reduces to 2 x I since all equations of the C-type

become identities. At the same time all variables {qi, pi} are expressed by {qi, pi.}

Moreover, owing to Eq. (3.19) which now becomes

d PR (ﬁi_ai)ﬂ—k
itk MZ "0 v e
qi(n) ol k=10,12 ... (5.21)

| M8

P =

n

I variables are eliminated. Consequently, we are left with I variables and I
equations of the & -type which is considerably simpler than Egs. (5.10) - (5.11).
It is obvious from Egs. (5.13) - (5.18) that the equation & ,{ lbecomes now

Ox e i gl g} =03 {(k=0, L, 2 L ) A E=1,9 D). (5.22)
In the case of 1 = 1 we have either {q°} = 0, if homogeneous boundary conditions
are used or {q°} is given in advance by the left boundary conditions, v, (z). For

i = I we have analogously either {pI+1} = 0, or {pI*+!} is given in advance by the right
boundary condition, y_(z).

To complete Sec. 5 we give next the elements of the matrix D(1;1, I).

We consider first Eq. (5.22).

£ oarkah G <0 £ ik [ Bua@if2) + £ ia(512)chm [ain+

n=k

P by K k=10, 1 2i% %,
T £ i—1 41 il . y 9 4y
kn(817, B)qz~" + Akn (31, B1), } (12125 n,) o

where Bkp, Ykn are defined in Eqgs. (3.13) - (3.14).
In Eq. (5.23) we have defined I'k, and Ay, by

gi-1 5i
Tin (8-, 8i) — (Ait1)n-kak / [sn(&—l, z) - (~z)te 7 (—z)ke w?z"}dz (5.24)
B+
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i+l 5i

Axn (8141, 81) = (ATH)nkS [ | Sp(~8141, 2) — (~z)te % (-z)ke 22 [dz  (5.25)
B—

and G, is as in Eq. (3.24) with d replaced by 8i given by

8i = Bi—qi
— oi(bi - ai). (5.26)

Hence the matrix D(1;1;I) has three types of elements:

(i) The first-kind element, Dy, is identical to that given in Eq. (3.28).

(11) Dkn = rkn<5i_1: 8') (5'27)
and
(i) Dip= Aa(81+, 5 . (5.28)

It is recalled that

o (= .n A" (2) | :
In = - n! O" ) ”er':‘ -
(5.29)
pit! = <“3n (AM)-n dhy_(z) | ;
" n!

n
dz | s

which implies that q° = pl*!=0 for all nx0, if homogeneous boundary conditions

are applied at x = of, pL

It is easy to see that there exist in general I different countable sets {A}, | n = 1,
2, ...] of eigenvalues. This conclusion follows from the fact that the values of the
matrix elements given in Eqs. (3.28), (5.27), (5.28) depend on the combinations
{o{, Ki} with the sets A’; i, j =1,2,... L In order that Eq. (5.12) be satisfied we
must have at least one free A’ in the case of vy, (z) = 0. The other A'-values can
be fixed in advance.

The number of the permutations

il 4 i2 ij-i 4 ij ij+1
(}» " oo BIFEY oL B ) (5.30)

is equal to I'! and the set of values {\)} taken on by A in one permutation are in ge-
neral different from the values taken on by A' in another permutation, because at
least six columns of D(A;1;I) for a given permutation (5.30) are in general different
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from the corresponding columns of D(A;1;I) for another permutation provided
d! # d? £ ... # dL. Hence, we have (I!) {K’n =i 1325 2., } sets of eigenvalues.

This conclusion is of importance from the physical point of view in optimisation
considerations.
We have therefore established the following

Theorem XV. Let A';i = 1,2, ... I be closed sub-sets of R! with limit points
0 < di < bi such that d**' = bi =1,2,... I-1. Let K'(z,z') = Al o} be the values
of the constant kernel on Al ® B and of the constant total cross-section on Al res-

I
pectively. Let further y,.(x,z) be the solution of Eq. (2.1) valid on ( ylAi) ® B.
Then:

10 y,.(x, z) is given by Egs. (5.13) - (5.14) and is uniformly continuous everywhere
I 1 1 .
on (U A) ®B, where (U A)) is given by U A'-{d'b'|i=1,2, ... 1}.

-
20 y,.(x,z) has finite partial derivatives of any order everywhere on (U A)®B

b
and on (U A') ®B-.
i1

30 The elements of vy, .(x, 2), {yi (x,2)|i=1,2,... I} satisfy exactly homogeneous
or inhomogeneous Dirichlet conditions.

40 There are (I!) countable sets of eigenvalues which are different from each other,
if {A ot} {M, 0l and A2 Al; 5,j=1,2, ... 1}.

6. DEGENERATE V-, X-DEPENDENT KERNEL

The present section is concerned with an application of the theory to the velocity
and angle-dependent kernel. This somewhat more general case with respect to
kernels considered hitherto does not in fact present any new aspects from the metho-
dological point of view.

It will be supposed that the kernel has the form

L

K(v,0'52,2) = 6((v) T fo(v,z)he(v,2);{VV,0,2,2 | (v, EURU) A (z, Z€B®B)},
e=0
(6.1)

where U is the velocity space.

A special case of Eq. (6.1) is the first order degenerate kernel K(v,v") = M(v")
Zs(v) Z5(v) /Zs where M(v) is the Maxwell distribution and Zs is the Maxwellian
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mean of the scattering cross-section Xg(v). No restrictions will be imposed on the
functions {f;(v, z), h.(v, z) |1 =1, 2, ... L} except the conditions for normalisation

deuBffe(U, z)h, (v, z)gn (X, v, z) dz < 0 (6.2)

for all 1 <1, I"<CL all n>0 and all x€A, here
X—a
S (xf [ 72;) ~< —Z--)nei 27;5(0) ; {Vx, v, z| (Xx€A) A
n ] O't(l)) O't(l)) t 2 >
(vEU) A (z€B..)}
gn<x7 v, Z) -
z —z \0 _ x-b
Sn<x;b,->~< )e z[ot(v) 5 {VxX, v, z | (X€EA) A
o¢(v)
(vEU) A (z€EB_)}. (6.3)

This implies that 8-functions may well be present in K(v,v’; z, z’) because it is
not required that Eq. (6.1) be square integrable. According to Sec. 4 we write the
solution in the form

1
Vi(x, v, 2) =2 (v, 2)¥er (X, v, 2); {VX, v, z| (X€EA) A (VEU) A (2€B_)} (6.4)
e=1
and

L

\V——(X, v, 7‘) = X
e=1

fe(v, Z)We-(X, v, z) 5 {VX, v, z | (x€A) A (VEU) A (zEB_)} (6.5)
and impose for definiteness the boundary conditions

vi(a,v,z)=0 (6.6)

and

v_(b,v,2) =0 . (6.7)

Now we wish to establish the conditions for which Egs. (6.4) - (6.5) satisfy Egs.
(1.1) and (6.6 - 6.7), where the functions

{Vei(x,v,2)|1=1,2, ... I} are given by the expressions
| n
Vei(x0,2) = £ WM Sax-a)-(-gre L |.q, (6.8)
l g b}
Ve (X, U, 2) = § A)"[Salx-b,0)~(-t)e & |.p,. (6.9)
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with §{ =z [o¢(v) and for 1 =1,2, ... L
We shall use the following

Definition VIII.

X—a

10 Bi (x—a) = a';{do_Bf_dz [sn (x—2,0)-(~me & ]fe’(o, z)he(v, 2)

x—b
20 vy (x—b) = 9% fdufdz[ (x-b,{) - (-Q)ne & 'Jf;(u, 2)he(v, 2)

fork =0, 1, 2,
30 @, (x) = / dv / dzh,(v, z)y (x, v, 2)

3 q>e(X) = @et(X) + <Pe_(><)-

Next we observe that owing to the positivity of o¢(v); vEU, the exponentials
in Eqs. (6.8-6.9) are finite and unique everywhere on A* ®B ® U. Hence, the
quantities Bia(x — d), yin(x — b) are well defined on A’

From Egs. (1.1), (6.4 - 6.9) and from Def. VIII it follows upon multiplying by
g% that
(x— a)n—k L

f,(v,z) £ A"Kq, A2 f(v, 2)(x) = 0. (6.10)
1 n=k e (I’l—k): e=1

I M

e

Eq. (6.10) must be satisfied everywhere on A ® B © U.

Equating coefficients of £’ (v, z), £ (v, z) for I'=1and defining the new quantities

= L

B]in(x—*)aqen = Z_ Bt;:n (x a)qgn,
» Dty

Ti(X = b)pen = Z ¥ (x—b)p,

we can bring Eq. (6.10) in the form

- d - n ~
fgp (x=d)" Qen= 1 5 an [ Bo(x— )+ = Ta(x=D)pg, |- (6.11)

n=0 n' n=0

Eq. (6.11) is formally identical to the equation valid for the case of isotropic
and velocity-independent kernels.

Again putting equal to zero the coefficients of fe(v, z) ; (1 = 1,2, ... L) in Eq.
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b we get the following set of

Lim=0,1,2, ...}:

(6.10) and evaluating the derivatives A% at x — ¢ 9

equations for the determination of {q, le=1,2, ...

- L aee’ D = g
2z x{ x[ B (d[2) + goy;;v(—d/Q)cvn] —aknﬁee}qm _ 0 (6.12)
forall'=0,1,2, ... Land k=0, 1,2,... where {yn, akn are given by Egs.
(3.24) and (3.28) respectively.

It should be observed that the functions ¢, (x) given in Def. VIII are not iden-
tical with the angle independent flux ¢(x, v). The latter being given by

X— 0]

o(x, V) = Exngo{[{ dzf, (v, z) [sn(xw, D=t~ }qm+

n=0

+ [ daf, (v Z)[Sn(x— b B (—g)"e—xrb} pm} (6.13)

In the case ofisotropic scattering (K(v, v';z,z’) is constant on B ® B) Eq. (6.13)
simplifies to the following expression:

IR R 10 ind
- Zf Z— b - xjn-v _YV(x — q}n-v
(o >J b {< (1) LX) Pey - (V(x = )7,
)"E

Pisotr. (X, U) = E [
() Enys [0e0) (x = 0)]q-,, Em[ctw)(bux)]pm} -

(6.14)

Qisotr (X, V) with its first-order derivative is continuous everywhere on A including
the boundary points a, b, of A.
We have therefore established the following

Theorem XVI.
Let the kernel K(v, v'; z, z') be represented on U ® U ® B ® B by the sum

which may or may not be square-integrable.

Let the functions {f;, h,|1 =1, 2, ... L}, which may contain terms with delta-

functions* be such that the super-matrix

(*) or other distributions.
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D(A;15L) = (Bia(d/2) +n§0?§’Q(—d/2)Cvn) (6.15)
has a finite determinant
|det D (A;1;L) | << (6.16)

for a non-empty set /Iy, of A-neighbourhoods.
Then:

1o The general solution of Eq. (2.1) is represented by superpositions of constant-
kernel solutions as given by Egs. (6.8 - 6.9).

20 The solution satisfies homogeneous or inhomogeneous Dirichlet boundary condi-
tions.

30 The sets of coefficients {q,, p,, |1 = 1, 2, ... L} are constants on A®B® U.
40 The equation
det Dil:1;1y =10 (6.17)

is the spectral equation and the eigenvalues are constants on U.

Remark XIII.

From Egs. (6.8 -6.9) it follows that the case z = 0 is equivalent to the case
ot(v) = o and vice-versa.

Moreover, we have the continuity relations

® (x—al® _
L (x, v, 0) = ,,Eo()“)nqen n’! Lo = @e(x)
and also
o) (x__ b)n B
\Vg_(x) D’ 0) o nEO ()b)n en “—;!7 o (Pe(x)

Inspite of the above results vy (x,v,0) remains energy-dependent owing to the
factors f,(v, 0) in Eqgs. (6.4 -6.5).

Remark XIV.

The development of the present theory tacitly makes use of the theory of distri-
butions. This becomes clear from the definition of the coefficients

Qp = 030(X) | x=xo ; XoEA".
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This can be seen as follows:

The coefficients in question are defined on a sub-set of A which is a compact
sub-set of R, The linear form in the sense of distribution theory is the operator

gn
Ty =20 —= =10, 1, 2 wney
J xn
which according to Eq. (2.35) satisfies the criterion for a linear form to be a dis-
tribution:

M
[<Tm(P(X)>|,<, )

rn

where M, = sup sup y (X, z)< o and ris a constant.
XEA ZGB’\’

On the other hand, due to Theorem I, Corollary 11, there holds

w(x, 0) = [ y(x, 2)dz = 9(x).

Therefore, there holds also
[ < Th ox) > [<M; < oo

and consequently the coefficients {q,|n = 0,1,2, ...} constitute a set of values
for the distributions {Ty}, whereby ¢(x) is a test function. It is not difficult to show

that the distribution function is the set of values of another distribution, ;;\l(x, z).
Theorem II, Corollary II states the conditions for which a distribution T, can be
calculated when the distributions {T"[n"=0,1,2,... n—-1} are given. With the

help of them the distribution G(x, z) can be expressed. To see this let us expand the
distribution function y(x, z) in a Taylor series in the right neighborhood of the

point a€A:

v (X, z) = ei: ~(_x;a_)~n y® (a, z).

n=0 n!
From Eq. (2.22) it follows that
n—I1
Ry (x, 2) = W(x, z) = T (-2)VN0x9(x).

One obtains then immediately

v(x, z) = y(a, z)e " ——— - > ) (-z)¥ " (x——.a)" 0y o(x) | x=a.
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Upon rearranging terms conveniently we find

IR oL [ B ST JO S

z. 1l 70 2291 7331

x—a)t .
¥ (?ﬂ? T R S J 9(x) | x=a.
Upon summing-up terms having as a common factor Ty for n = 0, 1, 2, ... we
get

X—a

X—a ” — =
v(x,2z) =y(a,z)e™ , + X (Sn(x~ a,z) - (—z)le z ) Tho(x) [ x=a,
n=0

where S, are the polynomials given previously. Obviously the distribution /q;(x, z)
is given by

x—a)
v(x, 2) = y(a, z)e  ? +*§<sn<x—a,z>—<—z>ne 2 )T,.



PART C

7. MANY-DIMENSIONAL SYSTEMS

The first part of the present work was concerned exclusively with transport
problems in one-dimensional spaces, R'. The purpose of the present part C is to
give an account of the generalisations obtained sofar and to examine possibilities

for further generalisations.
To be more specific we shall consider finite, many-dimensional systems bounded

by convex surfaces of arbitrary shapes.
As basic equation will again be considered the Boltzmann equation

{0015 - ¥ 4 vE(0)Jw(x, v) = & fdve K, V)v(x, v), (7.1)

where A is the eigenvalue parameter.
We shall make use of the following
Definition 1X.

1o, RP is a sub-set of the p-dimensional Euclidean space EP, RPEEP, containing all
the points of a given physical system, such that XE€RP is a point of the system.

90, S is the convex surface of the physical system RP, such that the normal on S

at x' does not, if prolonged, meet S again for all X on S.

30, ¥ is a sub-set of S, £ES, such that x’€EX is a source point on X.

40, 1 is the outwards pointing normal to X at X

-

50, v is a vector independent of {x, X' n} belonging to the p-dimensional vector
space UP. UPis the velocity space of the particles in a cell around the point

=]

XERP of the system and QO is a unit vector Q — G/U (v =v).

60. The operator polynomials S, are given by:

S.(A,B) = § (71 anvpy, (7.9)

v=0 (n-v)!

where A, B are any operators acting on functions defined on RP @ UP.
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70. Further useful operator functions are given by:
x-%).n
Hy = exp. { - ( i ) : > (-B)n (7.3)
Q.n
and

G — exp (- (x - x) Ez) (-B)n . (7.4)

80, The reduced streaming operator is given by Q.v + 1.

Remark XX.

From Def. XI, 6° it is seen that
Sn (-A,~B) = (-)" Sa (A, B) . (7.5)
We shall use the above definitions to prove the following

Theorem XVII.

Let A and B be given by A = (;—;) .V and B:é.V', where v’ = 9., .

ez
Then, if V = a_, there holds for every positive integer n
X
10, VSu(A, B) = =84 (A, B) (7.6)
An
20, (B + 1)S, (A, B) = s (7.7)

Proof: Assertion 1° is proved by construction.
The proof of 20 is based on the proof of 1° using the definition of the operator
polynomials.

Remark XXI.

From Eq. (7.6) it is seen that the action of the streaming operator, B 4 1, on the
polynomial S, (A, B) renders it independent of B for all n. This property simplifies
the construction of the distribution function satisfying Eq. (7.1).

Theorem XVIII.

The streaming operator annihilates the operator function H, and Gy,.
Proof: The proof is immediate.
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Remark XXII.

The general solution of Eq. (7.1) may contain linear superpositions of the funct-

ions Hy and G, with arbitrary constant coefficients.

In the present section we generalize some results obtained sofar to the case of
any number, p, of dimensions using a degenerate velocity dependent scattering
kernel. Apart from being degenerate this kernel will be otherwise arbitrary and in
particular it will not need to be a Hilbert-Schmidt kernel.

More specifically we shall consider kernels of the form:

SR

K(v, v) = £ f, (0) hy(v); {Vo and Vv’ | vEU and v'€U). (7.8)
e=1

£, hy will be summable functions on UP. The equation to be investigated here is
the Boltzmann linear equation of the form:

> =

(v.V +vo(v)w(x, v) = rJ dvP K (v, v)y)x, v') (7.8)

and vo(v) is either equal to vZ(v), if the problem is stationary, or it equals
M+ VZe¢(v) in the time-dependent case. In the second case the distribution function
is given by:

-

v(xv) = Ly {yx 1, ),

where 8t{\u} is the Laplace transform of the time-dependent distribution function
and p is the corresponding spectral parameter. The system for which Eq. (7.1)
will be investigated is bounded by the convex surface S, such that Vr is the set of

all the points xERP inside S .

X is a point belonging to the boundary surface, such that ;’EZ, where ¥ is a sub-

set of S such that the ingoing flux for (I_; : v < 0) y-(x, ;(, 1_;) satisfies the boundary

condition:

s -> > . - N 7”62
v vy | x -z (7.9)
0 ; otherwise

2 (;{,—u) is the flux entering the surface S at ;( and is an arbitrary given function.
In work published previously the solutions of Eq. (7.1) were expressed as a super-
position of operator polynomials S;(A, B) and exponential functions as given by
Egs. (7.3) - (7.4).
These operator functions are a generalization of algebraic polynomials deduced



80 ITPATMATEIAI THE AKAAHMIAY AOGHNQN

in ref. (199) by using the structural properties of the distribution function on R*!
and by conveniently rearranging a converging series.

The operator functions in Eqs. (7.3), (7.4) can be used to construct the solution
to Eq. (7.8) for every system bounded by the convex surfaces S with finite diameter
| |

|

"
18| and satisfying homogeneous or inhomogeneous Dirichlet boundary conditions.

K

SR = oy
Fig. 8. On XZcS the surface-source function yg (x’, v) determines the boundary condition on S for

- > - > - . > >
n.v<0. Forn.v>0 and x’ €S-Z per definition the equation yz (x’, v) =0 holds. The
- > > > > 5 - - . . -
vector diameter, § = max (B-a | a, BEVP), of Vp is finite. X' is a reference point x'’€Vp
] = 2 e 3 2 & o = v A
and x is the observation point. y_(x, x’, v) is the distribution function at x due to the

= ex = - >
surface source yz (x', v) at x’ for n. v<O.

To make clear the method we proceed in a way close to the experimental obser-
vation methods. As a matter of fact in order to measure experimentally the distri-

bution function at a given point; of the system (see Fig. 8) we introduce from the
outside of S an appropriate detector along a given geometric line ;—; At the
point X a surface source Vs (;, G) may (;'EZ) or not xX'€X — %) exist.

Next we choose a series representation of the ingoing part of the distribution
function \y(;, ;', 1_;) along the line X-X such, that:

- - >

1) w-(x, ;', v) = yz (x',v) for x =x" .

(ii) The coefficients of the series are determined such, that Eq. (7.1) is satisfied.

(iii) The outgoing part \p+(;, ;', 3) is developed in a series along x—x" and the
coefficients are determined in such a way, that Eq. (7.1) is again satisfied.



DISTRIBUTION FUNCTIONS AND PROPERTIES OF THE BOLTZMANN EQUATION 81

The point X’ belongs to the set VP, x"EVP -8,
- > > o il
(iv) The distribution function y(x, X', v) satisfies the condition

of dep. f dxr [ dxP—!y(x, X/, v) = C, (7.10)
uP VP b2}

> => =

- > >

> > >
where y(x, x’, v) = y_(x, X', v) + ¥, (x,x,v), and C is a positive finite con.
stant.

Due to the complexity of the subject we decompose in the sequel the presentation
into a number of sections of progressing generality. In addition we shall omit the

- >
arguments x’, X" for simplicity and we shall write the distribution function in the

form y(x, v).

8. DISTRIBUTION FUNCTIONS FOR CONSTANT KERNEL

Next we consider the simple case of a constant scattering kernel and we observe
that in this case the equation

- >

= (;_ ;I) % I_l> - = > ;
(QV+4+lexp[ —-——— ] (Q.V)ox')=0;Q= - (8.1)
Q.n

is satisfied according to Theorem XVIII. Theorem XVIII suggests that we can

construct two kinds of solutions to Eq. (7.1) wl; (i=1,2) for constant kernel with
fundamentally different analytical behaviours.

First kind

g Q.n
b (x-x).n\ - -
+vyz (%', Q) CXP(- S , n.Q<0 (8.2)
Q.n
and
W= B (Syx—x) . ¥ 8.V e, n.8>0 (8.3)
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o (. B T B s o B0 (8.4)
and
vt = 2 S (G-%). v, 8.7 )e@) ;n.8>0, (8.5)
n=0

where the polynomials S, have been given in Def. IX, 6°.

Obviously Egs. (8.2), (8.3) give the value of the distribution function on the

segments x — x". Moreover, considering the boundary condition

vz (X, V) ; (Vx ‘ X = ;'>A;'€Z

0 . (ve | §e B iemes

we see that the behavior of the distribution function changes according to whether

X belongs to X or to S - X.

Regarding the difference between y'. and w2 it is observed that, for {)O_I_;, wi

> >

is irregular becoming non-uniformly continuous at v,, x =x". On the contrary, y2
isregular everywhere on RP ® UP. In addition, it is pointed out that the distribution
functions, Egs. (8.2), (8.4), are in fact general, since they are represented by all

positive powers of the components of the vectors {x, U} and satisfy any boundary
condition represented by given functions. This is an expression of the completeness
of the operator functions S, and Hy, with respect to the possible boundary functions

vy (X, \3) Even in the general case, i.e., the case of non-constant kernel, it would
be admitted that, due to the arbitrary choice of functions {¢@.} the polynomials

{Sn(A, B)g,} form a complete set. Moreover, since S, and (_Ej.v’)n are poly-

nomials of y’, the resulting equations for the unknown coefficients Dk Pe(x") (See
ref. 206), obtained by inserting yi, in Eq. (7.1) and equating to zero the co efficients

1 ke kP .

of all powers dx dx ... dx , are algebraic. From these equations the coefficients
1 2 kp

Dkg,(x’) and the corresponding eigenvalues Ay, v = 1, 2, ..., can be determined.

To conclude this Section we make one more remark concerning the multiplicity
of the coefficients in Egs. (7.8), (7.10). These coefficients are used for the super-



DISTRIBUTION FUNCTIONS AND PROPERTIES OF THE BOLTZMANN EQUATION 83

position of the polynomials S, and exponentials H, and follow from the action of

2 - . >
V' on @,(x’) or of V"’ on @,(x"). Obviously, the operator aDk acting on ¢,(x’) gene-
rates as many unknown coefficients as the number of its different terms is. These
coefficients are in general different. On the other hand it is well known that V’

-> . . _),
®.(x’) is a vector giving the direction of maximal variation of ¢@.(x). For systems

—> > = -
in which - V'¢.(x’) is parallel to the outer normal n on S at x* for all x’€S, the
number of coefficients reduces considerably and the corresponding equations for
their determination are simpler.

In fact, if we replace Q. V'(p(;’) by Q. ;q, where q is any real number, we have
instead of p coeflicients only one coefficient. This property suggests a considerable
simplification of the distribution function, when the surface S is spherically symme-
tric. The symmetric case is considered in the next Section.

Remark XXIII.

In the many dimensional space, EP, the compact sub-set is represented by RP.

- =
Due to the vector character of x — x" and of V' the polynomials Sj,(A, B) are now
themselves distributions. The test function in the present case is again

o(x) — / w(x, 0)dv®.

—>

The distribution giving rise to the distribution function y(x, u) is now a linear
form of the polynomials S;(A, B). For example,

> >

vi(x%,0) = X Sp(A,B); n.Q >0, etc.

It appears, therefore, that the theory of distributions is the natural way of expressing
the distribution functions in the present theory.

9. DISTRIBUTION FUNCTION FOR SYMMETRICAL SYSTEMS

We shall now consider in more details systems characterized by the relation

>

-V'o(x')

I (9.1

at every point x' of the system’s surface, S.
Relation (9.1) is a consequence of the geometric symmetry and of the homoge-
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neity of the physical system. From this it follows that (see Fig. 9) we have also ..

-
|

~lim v’o(x”) 'n.

;—;”
Therefore, from Egs. (8.2) - (8.5) we get the following simplified distribution
function, provided n is taken at the point ;', where the line x - x” +t- (:: - ;) '4

> >
.\x~ x J, (t > 0), intersects the surface S, of the system.

Fig. 9. The normal n at any point x' of the surface of a hypersphere or of an infinitely extended
plane is an axis of rotational symmetry. This is true for any parallel sphere or plane

respectively. The property -y (p(;') | };1 for all x'€S reduces considerably the multiplicity
of the superposition coefficients in Egs. (3.5) - (3.8).

To make this clear we give the new scalar variables in

Definition X.

lo. & = (x-x).n, (9.2)
9. & = (x-x").n, (9.3)
A Ny (9.4)

Using the above variables we can write the distribution functions in question
as follows:

First kind

Ve = E, an|Sa(6 0 - (<0 exp( - ¢) ] +v2 (%, ) exp[- £ ]38<0 (95)
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and

oo

‘Vi' = HEO PnSn (§,0C) ;>0 (9.6)

Second kind

vt = £ a0 [5a6 0- (-0m exp (-G).8)] +
+vs (%, ) exp (- (x-%).8) ;0<0 (9.7)
and

4
Vi =

n

I Mg

o PnSn (8,8);6>0. (9.8)

In the above particular case the coefficients { Dk ¢, (;c) }, becoming simply
[gn, pnl, satisfy an algebraic linear system of equations.

We shall in particular give here without derivation the simplified form of the
second kind solution of Eq. (7.1) with the kernel as given by Eq. (7.8):

e f0 L ) ()

“expl-o(v) (x-x).0 ]]—i—wz (x, Q) expl - (x-x) . 0l;t<0 (9.9)

_ 8 ® v KNI 9.1
vii=E 60) £ pocS, (a,c(u)) ;{0 (9.10)

In Egs. (9.9), (9.10) the coefficients {qne, pne|1 <1< L,n>> 0} are to be determined

-5

and depend on the boundary function, whilst f,(v) is defined by the relation

£,(0) = [vos)]™ £(v) . (9.11)

The comparison of Egs. (8.2) - (8.5) with Egs. (9.9.), (9.10) shows that on the
one hand the latter contain no operator functions and on the other hand they
possess a much smaller multiplicity of coefficients.

For the simplicity of the presentation we shall conduct here our argument only
for the distribution functions applicable to systems with rotational symmetry.

Before verifying that yy, satisfy indeed Eq. (7.8’) it will be shown that y;__ satis-

fies the boundary condition, Eq. (7.9). If; = x, yrL— becomes equal to yy (;, S)
From the definition of the polynomials, S,,, it follows that
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$n(0,¢/0(v)) = (=¢/o(v)® ;n=0,1,2, ... (9.12)

and consequently the bracket in Eq. (9.9) vanishes identically at x — x' and there
results

Y, (X, %,0) = - —ws(x,0);5<0. (9.13)

|x =x
Next we observe that there is a linear relation between the coefficients [qen] and
[pen]- This relation can be found by comparing Egs. (9.9) and (9.10) at a parti-
cular direction of v = 30. We choose 1;)0 to lie in the plane tangent to S at ;', such

that { = 0.

Consequently,

> > > >

Yy — VY, = V= (%, Uo)CXP[_G(Uo) (x-x). o-] =

+ % 6 5 (€ -8 pan) /nt, 0.1
where it is supposed that

lim £(v) = lim £(©);l1=1,2 ...,L. (9.15)

> +0 &> —0

Given y_ in advance it is always possible to represent yr, by Eq. (9.14) for

constant ;)0, because the set of powers [E7|n =0, 1,2, ...] is a complete set of
functions.

Now the continuity of y; . on UP implies that y, -y, =0 ({=0), and
therefore

s

fe(vo) Eo (&n Qs ™ E,.'n pen) Pl

1 M8

1

— —yz (%,0) expl - (x-%).8,) ; ¢ = 0. (9.16)
Upon taking the k-th derivative of both sides of Eq. (9.16) with respect to

> . - ->
x and putting x = x” we get

=5

L B Ak > > —>:| il
£ £,(00) Py = [~ ovg) 1. B expl- &7 - %) . Ga vz (<, 00) +

e=1
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L

+ E fo(v,)

e=1

den [ sl - (9.17)

T ™8

for k=0, 1, 2,
Equation (9.16) simplifies considerably if the homogeneous Dirichlet boundary

condition is imposed, ie. yx (;, 1;:,) = 0. In this case if follows from Eq. (9.17) that

y.nl

By = ;E _,,_—___-,__ Qs 112 L,n k>0, (9.18)

Egs. (9.17) and (9.18) are necessary for the complete determination of the con-
stant coefficients [qen] and [pen]. Next we inquire into the conditions for which
Egs. (9.9) and (9.10) satisfy Eq. (7.8"). To keep simple the expression we shall

assume that yg (;<, J) = 0 and introduce the following

Definition XI.
leta > k ~3 -
1o.  Bis (& n) = (n.V) fdup fz(v) h'(v) -

n.v<o

[8a(e ¢ o) - (=t/o))" expl o) G-x%). 8]l (9.19)

2. 44 (Ew) = (0. V) [dv £ ()b @)SalE, Cfo(v)) - (9.20)

> >

n.v>o

Using the above definitions we obtain from Egs. (7.8%), (99) and (9.10) the
equation

(B (& wa,, +78 &, wp,, ). (9.21)

Comparison of coefficients of fe(g), 1=1,2, ..., L, in both members of Eq.
(9.12) leads to the set of equations
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5 © L 3 n 4
£ne af 5 (B EwWT 2 A 6 W) (9.22)
n=0 n! n=0 I'=1 v=0
where 1 =1,2, ..., L,
1 2 S \A=v
(— 3 d~n> ; v<n,
Cvn = (9.23)

0 5 v>0,
and d = x —x".
From Eq. (9.22) the coefficients [qep | 1<I<L; n> 0] can be determined by equat-
ing to zero the coefficients of all powers of x. This is done by multiplying both sides
of Eq. (9.22) by (n.y)k and putting x = a, where « is any fixed point of VP. It is

- - -
convenient, however, to take a = x" or a = x", so that we have the set of linear

algebraic equations

; n ,(d.n
tﬂﬁﬁ (0, ) + 2 7ia (~—2—n ) Cvn}—ﬁee' Skn - K] qpy = 0 (9.24)

where «k =A%, 1'=1,2, ..., Land k=0,1,2, ...

The multiplication by (:1 .y)k is allowed since all expressions are uniformly
continuous on RP & UP. Since Eq. (9.24) is homogeneous the condition for the
existence of nontrivial solutions {qen} is identical with the secular equation

det| D(p;p;L)-xI|=0, (9.25)

where I is the unit matrix.

The elements of the supermatrix D(pn ; p ; L) are given by the equation
ce ee 0% s ipe 5 . ;
Din = Bxn (0, 1) + %0 Yk (—2—) Cvn - (9.26)

It is obvious that in the present spherical system x” may be identified with the

centre of the sphere and therefore ':1 . él = \3‘ equals the radius of the system.
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Next as an example we specialize to the case p = 3. The following results are
easily established using the Def. XI, 10 and 20.

e ( ) ( )
Bk" (O’ “) ;/ S l—f(s)—]n k- bkl | s > n-+k
n.ov (-) (n.Q) . k>n
(9.27)
| o n-v-k
a {d.n . ( d.n) /2 >
Yikn ( 2 ) 7 v‘.\—:o ( ) (n n-— k)
> ({1 : d)v ; k<n
f,(v)h,
L I<U (1 (U)<]°> (9.28)
n.v>o 0 jok> n

Introducing Eqs. (9.27) and (9.28) into Eq. (9.22) one obtains the system of
equations from which [qen] can be determined. The coefficients [p¢,] are then cal-
culated from Eq. (9.18). The eigenvalue spectrum follows from the determinental

equation, Eq. (9.25).

10. THE COMPLETENESS IN THE GENERAL CASE

From the results described in Sect. 9 it becomes clear what kind of generalizations
are required in order to be able to treat the case of a system with an asymmetrical
convex surface S. Obviously this is done if we abandon the restriction imposed by
condition Eq. (9.1). If we do so, then the quantities changing are:

(i) the multiplicity of the coefficients [p,, q,,/1=1,2,... L;n=0,1,2,...]
(ii) the structure of the elements [Bia, Yiea ] of the supermatrix D.

By using the distribution function given by the expressions

> ®© o+ I ) . V” 12
YL (X, X7, 0) = Z f(v) 2 sn(<x—x ).V ,‘i*) Pen(X) (10.2)
=0 vo(v)
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the elements [Bia, Yia | become operators and can be evaluated by operating with

them on (pen(;) and (pe,,(;") respectively. More precisely, we get from Def. XI the
following expressions in which we again use for conciseness of the formulas the

->

boundary condition g (x v) =0:

Ben (x— %, V', 1)9 () ——<‘ii.i9>k_)fgovfe<3>.he'<3>-{sn(<£~>2'>v; }%)
n WM& O
L o) (x-x).n |/ v.VY Ee il
cp[ == J( w(o)>}¢() (10.3)
Yo%~ %7, V7, W) = (1. V) S dor (D) hel)
n U>0
o Lo B
Sn((x—x W ’56(1))') o7 (10.4)

We wish now to see how Eq. (9.24) should be modified as a consequence of the
asymmetry of the surface S. To do this we use again the continuity condition

lim y . = lim vy
n.v>-0 ;1.;—>+o (10.5)

-> k - =58 k 3
to establish the relationship between (n.V’) ¢(x') and (n.V”) ¢(x”). Since
Eq. (10.5) holds at v — v, for all XEVP, upon inserting Eqgs. (10.1) and (10.2)

into Eq. (10.5) and putting thereby x = ;”, we get the equation

5 % {[x ] T @) (5. v fvor) _(_G(U) >k

,. (n-v-K)!
o()(x” ~x).n vy . V77 e
p< A > (Sow) |- o -
e g
) “UGJTJ o(x", %) (10.6)
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where

R IXTON =
9 (x’, vy) »Zlfe(uo) O/P drv’he(v)y; =

. f,(00)0e(X) (10.7)

e=1

Eq. (10.6) allows us to eliminate the constant coefficients Dk(pe(';(") from .
occurring in Eq. (7.8’) after the integration over Ur .

After some simple calculations one again obtains an equation for the determination
of the coefficients Dk(pe()}'). This equation is analogous to the simpler Eq. (9.24).

The condition for the existence of the determinant det D(p;p;L) which is of
infinite order have been investigated and applied in Ref. 207 for the case of R

To complete this Section we still indicate that the functions given in Egs. (13.1)
and (10.2) are the most general ones. It can be seen that this is indeed the case

if we only show that the operator polynomials [S,(A, B) [n = 0,1, ...] form a
complete set. To do this, we observe that A and B are operators having as range

E,, the set of functions
[pe(x) 1= 1,2, ..., L)] = Ey,

where ¢.(x) are infinitely many times differentiable functions, and as domain the
Banach space E, of the functions

[Sa(A, B)o.(x) |11=1,2, ...; Lyn=1,2, ...]

defined on RP & UP. The completeness under the above conditions is shown in
Ref. 208.

We can orthogonalize Sp(A, B)p, on RP® UP and this can be done by the
procedure described in Ref. 209.

It is easily shown that indeed the functions

[S.0s(A, B) (Xg); Xo=x, x| 1=1,2, ..., L;in=0,1,2, ...]

satisfy the axioms defining the Banach space.

In particular one verifies at once that

lim | (Sm(A, B) - Sa(A, B)) ex(x)) | = 0, (10.8)

m,n—>%

where || Sy || is the norm.
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We conclude, therefore, according to the Weierstrass theorem that Egs. (10.1)
and (10.2) can represent any function defined on RP @ UP and satisfying Eq. (7.8"),
Ref. 2.10.

We collect the above results in the following

Theorem XIX.
Let VP be a subset of RP with finite diameter, g, having a convex boundary sur-
face, S, and let UPbe the velocity space. Let further the kernel K(G, S ) have the

=>

form given in Eq. (7.8) with [fe(v), he(v) [1=1,2, ..., L] such that the integrals
e e S LR S

exist and satisfy the condition | det D | < oo.

Then, there exist solutions of Eq. (7.8") regular everywhere on VPgiven by Egs.
(10.1) and (10.2) and satisfying the boundary condition given by Eq. (9.3).

One also can easily show the following results based in particular on Section 10.

Corollary 1.

The regularity behaviour of vy, , on UP isdetermined by the behaviour of fg(t;)
on UP.
Corollary 11.

The solution of Eq. (7.8") is a superposition of constant-kernel solutions with
coefficients following from the scattering kernel.
Corollary I11.

The point spectrum of the Boltzmann operator is given by the secular equation,
Eq.: (8:25)!
Remark XXIV

It is not required for the kernel to be square integrable.
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