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SUMMARY

The three-dimensional problem of a surface part-through cracked plate is reduced
to a two-dimensional problem by introducing an equivalent through-crack model,
loaded by a convenient tension and bending stress distribution along the lips of the
crack. The principle of the model is based on a similar idea as in the line-spring model,
introduced by Rice and Levy [1]. In this model the singularities existing at the extremities
of the surface lips of the part-through crack on the near face of the plate, indicated
by experiments, were taken into account, whereas, in the line-spring model these extre-
mities were considered as free. According to this model the effect of the surface part-
through crack was replaced by a continuous distribution of forces N (x, 0) and moments
M (x, 0) along the near-face crack lips applied to an equivalent through crack. These
forces and moments were represented by power functions completely determining the
boundary conditions along the crack. In this way the two-dimensional problem, derived
from the model, can be readily reduced to a well-known Hilbert problem yielding integ-
ral equations containing the functions expressing the N (x, 0) — and M (x, 0) — distri-
butions along the length of the crack. These equations were solved by an approximate
numerical procedure. From this solution the expressions of stress- and displacement-
fields for the surface part-through crack may be evaluated, expressed in terms of the
distribution of the stress intensity factor function calculated along the whole front of

the equivalent through crack.

INTRODUCTION

Service failures in structures appear at the beginning as surface
flaws. This is the reason why this form of cracks, although not being of
the most prevalent type, is of great significance as a failure origin. How-
ever, the analytic solutions for surface crack-problems of finite-thickness
plates have been up-to-now rather poor. Irwin in 1962 [2] used a solution of
Green and Sneddon [3] to evaluate the stress intensity factor for a semi-elliptic
surface crack in a half-space. Smith [4] developed a solution, based on the
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so-called alternating method, for a semi-circular surface crack under condi-
tions of K;-mode deformation and Smith and Alavi[5] gave a solution for
a circular crack embedded in a half-space, as well as for a circular crack
partially contained in the half-space [6]. Thresher and Smith [7] have refi-
ned the work contained in refs. [5] and [6] and they have determined stress
intensity factors in surface part-through cracks of circular contours.

The case of embedded elliptic cracks, which better approximate geo-
metries of actual cracks, was encountered by Shah and Kobayashi[8], who
evaluated the stress intensity factors there, under arbitrary normal loading
of the body, and in ref. [9] a study was undertaken to define the influence
of approaching the free surface of the semi-infinite solid on the values
of the stress intensity factor. Finally, the same authors, in a review paper
[107], yielded a thorough study of the evaluation of the stress intensity factor
in embedded surface or inside part-through elliptic cracks and exposed,
in the form of graphs, interesting laws of variation of this quantity.

All these studies were based on an alternating technique, grounded
on two particular solutions. The first-one corresponds to the problem of an
infinite body containing an internal flat crack (circular or elliptical) and
subjected to a variable pressure loading on the crack surface. The second-one
corresponds to a semi-infinite body, subjected to convenient normal and
shearing fractions on its plane boundary, which counterbalance, by small
square rechtangles, the partial resultants of the stresses over each rectangle,
introduced by the first solution of the problem.

Hartranft and Sih [11] have analyzed the state of stress singularity
in the zone of the front face of the plate, where a circular crack penetrates
this surface and thus have improved considerably the results of previous
investigations.

In some of these solutions, and especially for the cases of elliptic
cracks, use was made of a convenient ellipsoidal harmonic function, whose
properties were studied by Segedin [12], and which represented conveniently
any polynomial distribution of pressure on the crack surface. However,
mathematical complexities have limited this polynomial distribution of
external loading to terms up to the third order. Recently, only Nishioka
and Atluri [28] and Vijaya Kumar and Atluri [29] gave a general solution
for an embedded elliptic crack, subject to arbitrary crack-face tractions in
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an infinite body, and solved the problems of part-through cracks in a finite
thickness plate by the alternating method, in conjunction with the finite
element method.

On the other hand, three-dimensional finite-element methods were
developed [13, 31], but these applications are subject to the already known
difficulties of this potential method to define adequately the stress field
at the vicinity of the crack tip and the necessity of disposing large memory
digital computers. For these reasons they are limited in number.

The boundary integral equation method, introduced by Cruse [15], was
used for the solution of surface part-through cracks [14, 16], but again
the method presents some limitations, which make its results at the vicinity
of the intersection of the free surface with the crack front doubtful.

The line-spring model method, introduced by Rice and Levy [1],
yielded an approximate solution of part-through surface cracked plates,
which gave more accurate results than any other previous method. On
the other hand this method appears to present a versatility for diverse appli-
cations in shell structures [18] with complicated shapes, where eventually
plasticity interferes [19].

According to the line-spring model the net ligament stresses along
the width of the surface crack are represented by a membrane load (N) and
a moment (M) distribution, whereas the crack near-face displacements are
expressed in terms of a crack-opening function (5) and a relative rotation
(0), both referred to the mid-plane of the plate, which are assumed as con-
tinuous functions along the length of the crack. The values of these quan-
tities are approximated by the corresponding plane-strain results, corre-
sponding to a series of respective edge-cracked strips of variable depth of
the cracks. While the approximation of the stress intensity factor by this
model is satisfactory along the central section of the crack, it becomes less
appropriate near its ends, where the crack intersects the free surface.

Moreover, at the points where the part-through crack lips intersect
the near face of the plate the model assumes a zero value for the respec-
tive stress intensity factor, since the length of the corresponding plane-
strain edge crack there should be equal to zero.

However, experimental evidence, presented in this paper, indicates
clearly that a weak singularity of the stress function exists. Such types
of singularities were previously detected and studied in refs. [ 20].
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It is the purpose of this paper to introduce an equivalent through-
crack model, which may take care of these anomalies of the stress field at
the intersection of the crack front with the near face of the plate and yield
therefore accurate results for the variation of the stress intensity factor
along the whole front of the surface part-through crack.

DEFINITION OF THE EQUIVALENT THROUGH-CRACK MODEL

The configuration of the surface part-through cracked plate, subjected
to a uniform tension at infinity, is indicated in Fig. 1. The existence of
weak singularities indicated experimentally by the front-face caustics (see
Fig. 3a) implied the assumption that the heights of the shallow protrusions
at the end points A and B of the front-surface trace of the crack are not
zero and they have a dimension of the same order of magnitude of the
crack opening displacement at the deformed humps. Then, §(a) may be
considered as proportional to %, instead of the normally made assumption
that §(x) at the crack lips, without end displacements of the protrusions
at A and B, is proportional to o .

In order to solve this three-dimensional complicated problem the
part-through crack with its particular shape was replaced by an equivalent
through the thickness of the plate crack, which was submitted to a load-
ing mode of the cracked plate, assumed to derive from the superposition of
three simple loading cases indicated in Fig. 2.

Fig. 2a represents the plate with its equivalent through crack
subjected to a uniform tensile stress o, at infinity, whereas Figs. 2b and 2¢
indicate the same plate subjected to a continuously distributed axial force
(N(x,0)) and moment (M(x,0)) along the whole length of the crack.
This distribution of forces and moments was assumed to apply at the
midplane of the plate. These latter distributions of forces and moments
along the length of the equivalent through crack were introduced to take
care of the unsymmetric loading mode of the plate engendered by the
part-through crack.

This difference in the mode of loading of the cracked plate from the
respective line-spring model [1] was introduced to take care of the weak-
ness of this model, which assumes that, at the front ends of the lips of the
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Fig. 1. A surface crack penetrating the plate thickness under uniform tension.
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crack, where the crack intersects the near free-surface of the plate, the values
of the stress intensity factor and the respective crack opening displacement
are zero, since the crack depth at these ends is zero.

However, extensive experimental evidence with caustics in artificial
and actual part-through cracks in plexiglas plates under overall tension
(elliptic or circular) constituted an incontestable experimental proof of the
validity of the equivalent through-crack model.

Fig. 3a presents the interferogram of a laser light beam passing through
the lips of a part-through crack under overall tension at infinity. The slightly
curved lines between the two black dots are interference fringes formed by
the light rays passing in —between the crack— opening of the crack lips and
reflected along the inclined surfaces of the crack between the near face of the
ilate and the bottom front of the crack. The curved lines of this interferogram
indicated that the warped surfaces of the lips were formed by the contin-
uously distributed axial force N(x,0) and moment M(x, 0), since these
fringes of the interferogram are formed from reflections of the two lip-sur-
faces of the part-through crack.

In the same figure two black dots appear also at the extremities of
the intersections of the crack front and the near face of the plate. These
dots indicate the existence of stress singularities at these points, correspond-
ing to caustics. These dots differ from typical caustics in through the thick-
ness cracks, because here the phenomenon is three-dimensional and the
deformation of the plate is limited only to a superficial front layer of the
plate. The circular shape of the dots corresponds to the creation of a shal-
low hill at these extremities, since dimples should create cuspoid curves.
Moreover, a meticulous examination of the topography of this area in a
Taly-surf recorder certified the existence of such hills.

Fig. 3b, which presents the interference pattern of the reflected rays
in a part-through crack, shows the same almost straight fringes in-between
the lips of the front near-face of the crack, with the lips showing some
COD at their ends.

On the other hand, an examination of the back surface of the cracked
plate with transmitted light-rays revealed the creation of a shallow trough,
indicated in Fig. 3¢, having the shape of an ellipse, with its major axis col-
linear with the front trace of the crack.



SYNEAPIA THE 26 MATOY 1983 433

All this experimental evidence suggested the necessity of introduction
of the equivalent through-crack model with a loading mode indicated in
Fig. 2.

The following assumptions were made in the model :

i) The thickness averaged tensile stresses 6., at infinity and o(x) along
the crack lips of the equivalent crack, as well as the nominal bending stress
distributions m(x) along the length of the crack are approximated by the

following power functions :

2s
o (x) zsz[1+}1<i> }ay, x| £ a
h a - ’,
6M(x, 0) x \** W
m(x)E#:Bh—l—L(a—) }ox, x| L a

where A, B, H and L are unknown constants to be determined and the ex-
ponents S and T are unknown integers.

The introduction of the ¢(x)- and m(x)-distributions expressed in rela-
tions (1) was based on considerations of constraints in the crack, which must
be variable along the length of the crack, symmetric with respect to Oy-
axis and therefore imposing that the exponents S and T must be integers.

ii) The three-dimensional character of the problem was approximated
in the vicinity of the crack region (|x| £ a) as being piecewise plane, where
the plate was assumed composed of a series of thin slices created by cuts
parallel to the Oyz-plane (Fig. 4). The thicknesses of these slices were vary-
ing, so that the individual plane-strain plates with edge cracks of depth
d(x) may be approximated with the fronts of their cracks being normal to
their lateral faces. Each of these sliced edge-cracked plates was assumed
as loaded by an axial force and moment as shown in Fig. 4. The magnitudes
of these forces and moments correspond to each slice located in Fig. 2.
Then, the crack-face displacements of a part-through crack were related
to the deformations of these individual slice strips by compliance conditions.

In this way, we adopt the same philosophy with the Rice and Levy’s
line-spring model [1], where the part-through surface crack is assumed
consisting of a continuously distributed line spring with compliance -
coefficients selected to match the respective compliance of the individual
edge-cracked strip under conditions of plane-strain, but we modify the

1144 1983
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Fig. 3. a) The interferogram of a laser light beam passing

through the lips of a part through-crack. b) The inter-

terence pattern of the reflected rays in a part-through

crack. ¢) The interference pattern of the transmitted light
rays through the part-through crack.
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mode of loading of the individual slice-strips and thus we may assume
that each thin slice of the plate is under conditions of plane-stress.

iii) Since in the line-spring model the respective crack-opening dis-
placements and the stress intensity factors at each point on the surface
crack along the Ox-axis are identical to the COD and SIF of an edge-cracked
strip subjected to an axial load N(x, 0) and bending moment M(x, 0) and
having a depth equal to the respective depth of the part-through crack d(x)
at the same point, it is imperative to assume that the depths at the end-
points of the near-surface trace of the crack are not zero and they have a
dimension of the same order of magnitude as the protrusions developed at
these points. This assumption is in conformity with the blunting effect
indicated in Fig. 3.

Under these assumptions the value of the stress intensity factor, deri-
ved from the case of an edge-cracked strip under conditions of plane strain
and submitted to axial-tension stresses ¢ (x) and to bending-moment
stresses m (x), is expressed by [17]:

K(x) = V2h {6(x) F, (%) + m(x) Fy (%) } (2)

where :

2z \3
0.752 4 2.02 £ + 0.37 (1 — §in =2 )

2
cos (122—)

&

P (E) = (tan TcTa)l/z

(3)
4
o\, [0.923 +0.199 (1 —sin IE)
R = (n 32) :
¥ o08 7%
2

In these expressions £ is the normalized to the thickness h variable depth
of the crack (£=d (x)/h).
The relative displacement 3 between the lips of the crack is expressed by :

2 oK
B oP

0

S = (4)

where E* is the equivalent elastic modulus, which is either equal to the
modulus of elasticity of the material of the plate for plane-stress conditions
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prevailing in the plate (E*= E), or it is equal to E*=E/(1l —v?) for
plane-strain conditions of the plate (v is Poisson’s ratio of the material).
Introducing Eq. (2) into relation (4) we obtain :

4(1 —v*)h

o (X)) = — [G(X) oee + M (X) atb] (5)

where :
3

am = [FLE) FuB)dE, \p=tDb.
0
A simple formula for the displacement & may be derived by using the
empirical relations given in Ref. [17], that is:

5= AUDB [ v®) + (9 vale) ©
where :

1.46 4 3.42 (1 — cO0s T;C" )

vi(§) = g Z\° -
TS
(cos 9 )

and : )

\-b<z.)=i{°'8‘1'75+2'4iz+71()§65)‘2} =

Introducing now relation (1) into Eqgs. (6) to (8) for x=0 and &, = d/h
(d =d, for the maximum depth of the crack) we obtain :

. 3(0) E K (0)
SR G R B bl
) Fi(&) i(l—v)o.h Vi (&) o (2h)'
K = (9a)
Fu(Zy) ve (&) — Fe(Eg) vir(Eo)
K (0) d(0) &
() =t — Fu(fg) ——
) o " e o
Fy (&) vi (Zo) — Fe(Zo) Vb (8a)
Moreover, for x=a, &, = d_}(la}_ and then we derive :
. S(a) E " K (a)
Folba) ————— — Vo (Ba) ——5—
g = 41 —v?¥) 6 h o, (2h)'/2 | " (10a)
A Fp (€a) Ve (8a) — Fe(&a) Vi (8a)
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and : K (a) d(a) E
V't \Qa) —— 1 T I:"t Yn
=y ) e ) T ek 1 |
i A s (10b)
» Fi (8a) vt (Ea) — Fe(8a) Vo (Ea) i

Now the unknown constants A, B, H and L in Eq. (1) are completely
determined, provided that the values of the exponents T and S are defined.
These values will be determined by solving the boundary-value problem
of the cracked plate under the loading conditions depicted in Fig. 2.

However, it should be pointed out here that the particular values
for K(x) and d(x) at the bottom of the crack and at the intersections of
the front of the crack and the near the free-face of the cracked plate were
taken from empirical formulas, as they have considered also in refs. [4], [17]
and [21, 22] and they are only approximate. The best method to define the
values of K (0) and §(0) is by defining the crack opening displacement & (0)
at x=0 from the interferograms of Fig. 3b, ¢ and the K(0) from the inter-
ferogram of Fig. 3a, which gives the crack-tip opening displacement at the
bottom of the part-through crack. Another possibility is the photoelestic
method, as it was exemplified by Smith and co-workers [23].

SOLUTION OF THE EQUIVALENT THROUGH-CRACK MODEL

For the solution of the problem we shall use the approximate analysis
of generalized plane-stress conditions and Kirchoff plate bending, similar to
the treatment by Rice and Levy [1], to solve the two dimensional problems
to which the part-through crack problem is analysed, by using the equiva-
lent through-crack model introduced in this paper.

Following the procedure of this model we have to consider the three
component-loading modes of the cracked plate and apply Muskhelishvili’s
complex stress function method [25] to each one of them.

It is well known that, according to this method, the components of
stresses and displacements in plane problems are expressed in terms of two
complex stress functions ¢(z) and y(z) and their derivatives. For planestress
conditions dominating in each thin slice the expressions for the stresses
ox, 6y and oy, and the displacements u and v are given by:

(6x+ oy) = 4Re[o(2)] = 2[9,(2) + ¢.(2)]

(6y — 6x + Yivwy) = 2[ 207 (2) + 2" (2)] (11)
. 1+v —v —
tin) = LEV [V () 2o — 4@
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The subscript t, introduced in the complex stress functions, indicates
that these relations are valid for an overall tension applied to the cracked
plate. This means that these relations will be applied for the loading modes
indicated in Figs. 2a and 2b. For this loading mode of the plate the
boundary conditions are given by :

Gy =0 Oxy=0 a y—>o0 (12)

Gy = ﬁ\%ﬂ: 6(x) oxy=0 at y=0|x|La (13)
Moreover, for y — 0, x>a the components ol stresses and displacements
should be continuous. Adding the boundary conditions (12) and (13) along
the crack, the problem is readily reduced to a simple Hilbert problem, where
we have to determine a sectionally holomorphic function ¢ (z), which is
defined all over the plate and which contains a discontinuity along the crack
front. For the particular symmetric boundary conditions, existing for the
tensile mode of loading, the complex stress function ¢ (z) consists of two
components. The one is derived from the loading mode appearing in Fig. 2a.
For these boundary-conditions it is already well known that the stress func-
tion ¢ (z) is expressed by :

. toa et [ W
¢, (2) = - 7 (z* -a®) J T dt
=R

which yields readily that :

(’.' == Gw ‘—‘Z N, = = »
=3 [ A 1} (14)

L —

For the loading mode indicated in Fig. 2b we have :

a

23 . 1/,
' _;1_,2_,2*1/2 A (L> ] (a2—#3) ™
¢, (2) = (22— a?) fA[l—FH 'y cw___t.:_z__dt

-8

which, after some algebra, yields :

b, [ , _4_&1"& E(_l)r%(%——l)....<%—1‘+1>

™ 2 |(z2—ay)'l ® = r! =
254, .., P % a \p+
x5 - (—) RNTES
2 2Sn L ptl (Badh \2
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It can be readily shown first that the expression for ¢, is convergent in
the domain |t| £ a, since in this domain the function (t—z)~! converges for
(t/z) < 1. Then, the components (¢, + ¢,,) of the complex-stress function
o(z), taking care of the tensile mode of loading of the model, are expressed
approximately by relations (14) and (15).

Similarly, for the bending-loading mode, indicated in Fig. 2c, the
reduced moments my, my, my, and displacements u and v are expressed by :

My + my = —112? D (1+v) Re [cp‘b(z)]

. 12 " " "
My — My + Mgy = T D (1+4-v) [Z(Pb(z) iy Zb(z)]

(utiv) = —7 [0, (2) + 20} (2) — 1, (9]
q. — i, = —4Dy; (2)

where the nominal bending stresses my, my and my, are expressed by
my =6M; / h% my=6M,/h% m,,=6M,, /h* and they correspond to the
stresses at the outer extreme fibers of the cracked plate, whereas (., are
expressed by :

oM, = oM,y oM, oM,

1= ox + oy '’ 1, = ox - oy

Finally, D expresses the flexural rigidity of the plate.

The boundary conditions for this case of loading are :

i)y =, =10 and q},+—h6—ua—;n;’3=0 at y - oo
6M(x, 0) h* om (17)
i1) my:__.._hz’_zm(x) qy+—6— axx} = at Y=O(Xl/~a

Proceeding in a similar way, as in the previous case, we obtain for
the component of bending of the plate the relation :

. a

: 2T o'z
(3+vEh , 1 , ~1/2f (t >‘ J (a2—1t2) 2
— 3 B =g @) T B T) [T W

—a
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which, after some algebra, yields :

(3+vEh , . Be, [, z
T )= [1“ 7 —a)h }+
1 (1 1
, Bio, 2, )r?(T_i)”"(é_—‘"“‘) (18)
T r=0 rl &

2,4,6,. . P 1 7 p+:
Ry it il & i o
p=0  2(T4r)+p+1 (22—a?%)z \ Z

Again, we can readily show the convergence of the relation (18) in the
domain, |[x| £ a enclosing the part-through crack.

Expressions (14), (15) and (18) allow the evaluation of the stress and
displacement fields around the part-through crack and the determination

of the stress intensity factor at the crack front.

THE EVALUATION OF THE STRESS AND DISPLACEMENT FIELDS

The problem of a part-through crack along the Ox-axis (y = 0) in an
infinite plate subjected to tensile stresses o, at infinity presents a geome-
tric and loading symmetry and therefore only the mode-I stress intensity
factor is operative. For convenience we introduce Westergaard’s complex
stress-function 7, (z), which vyields the following components for the
stresses and displacements for each thin slice :

1) For the stresses:
6x = ReZ,— ylmZ,
oy = ReZ;+ yImZ,’ (19)
6y = —yReZ,’

i) For the displacements (in the case of plane-
-stress conditions):

{(1—\/) ReZ,— (1+v) yImZ,}

u =

= {2ImZ,— (1+v) yReZ,} (20)
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=N
| 8]

) For plane-strain conditions the components

of displacement are given by:

u = MEV) {(1——2v)ReZl—yImZ1}

v = (lgv) {2(1~2v) ImZ,— yReZ, }

The complex stress function Z,(z) can be expressed in terms of the
functions o, (z), ¢, (z) and ¢, (z) and it is given by :
7 2

Z

(Z2 o az)l/‘.’. o

i (1 1
7(7——1>....(—2-—1'4‘1)2,4,0....1’ 1

Zy(z) = o, (1—A—B)

2AHe,, R -
I L rl 2 I Pt
(-
Z (72— a2y
7(3-1) - (z-1)
—\=—1)....\5—r+1}),,.
- 2BLo, %(——1,)r2 2 9 ..,i.hz,,.,P‘ ‘ 1
+=0 rl p=v 2(T+4r)4p+1

In order to evaluate the stress intensity factor at the crack front, it

is advisable to introduce the transformation :
C=(z—a) (23)

and Eq. (22) becomes :
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{+a
R e iy SR D
| Sl e FRRTT I
"z ) (1
— A ) ias —r+1
9AHo, X, . 2\2 9
o : O lzo(__i) ( r! >
2,4,6,.., P 1 a \pte {+a
. 9
I)ZU 2(S+ )+P+1< +a) [(C+23)C]/2 s
1 1
2BLloy &y 2 ( ) (2 “"'“)
U3 r=U

24,6, 5 F 1 a >p+‘7 C+a
= 2(T+r)+p+1<:+a [(+2a)% ]

Considering the fact, that as [{|— 0, the quantity Z,(Z) (2)'/2 tends to
a constant value, we define the stress intensity factor K} as :

K = V2r im [2Z,(0)] (25)
T—0

and this quantity, according to relation (24), is expressed by :

= - ] ( l J> ( 1 A 1)
s s s 2AH 2 2 \2 D ) LN 1
K= (KiH‘Kib) =1 —A———

o
b X = 2, T2 Fpr1
1 (1 1) (1 r,l> (26)
1, 2BL & 2\2 7 /N2 T T e g 1,
s (P B L rl — 2 pra| o=

In order to define to components of stresses and displacements, we express
the complex coordinate Z in terms of the polar coordinates r, 0. We have :

K; K; O .. 0 ;
= - - 92
Z,(%) amt) 2 (cos o —isin 2) (27)
Then,
dZ,(%) Ky 1 ( 30 .. 30)
T~ 2@k £k 2 T (%)
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(21) and considering that

y =rsinf, we derive the components of stresses and displacements for the

surface part-through crack at the vicinity of the ends x| =a and y=0

given by :

s gn?]
.—smé 2
[1—}—smgsm 36}} (29)
Sin 30
2008—5
[5—3\, 0 ) 30]‘
T+ 985 —%%83 ,
[7—\, 0 30”
Ty oy g (30)

In the neighbourhood of the region |x| < a and y - 0, when plane-

strain conditions prevail, we have :

and

6x = V(oy+ 6,)

Gy
_ 1
‘ (27\:1‘)1/ 2
Gy
=20
V B ht
W 27'5)1/2 G

4” (5—8v) cos%—cos 26
h

0 .30
[7—8\: s1n2 — sin 2 }
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For the whole plate the complex stress function Z,(z) (Eq. (24)) yields, by
introducing the transformations :

0y

(z—a) = re'™ and (z+a) = ree'™ ¢

_ﬁEﬂQ
Zy(2) = 64 [1—A—B] - 1/, (ﬁ
(ryry) /2
1 1 1
——1)....\ 5 —r+1
abey 2 x5 =) (g1
A e —
i~ r=V .
(33)
2,1,.;2..,[1 1 r ( a >p+2 e_i[(p+])ﬂ+ﬁ1:1‘}2]
p=0  2(SHr)+p+l (ryr)'fe \ 1
1 /1 1
_ Blog £ .2 (2—1)---'<§ —“+1>2,4,§.,v | ;
= rl p=0 2(T4r)+p+1 (ryry) 2
( a >},+ il rno+ 2]
r
and
2 3
Z; (Z) T 190 “'—”\_B] - 3 e_l[E(ﬁl-H’”)] =t
(r 1) /2
1571
: —1). —r+1
2AH R ) (2 ) <2 )
T T rgo(—ll) r!
2,456, 5P 1 { P+2 <_a_>p+?e_i[(p+2)ﬂ+01+ﬂ2] s,
p=0 2(S+r)+p+11(rry) s \'r
a23 (a)pH e_i[(p+2)0+3@%ﬁ)]}+ (34)
(ryrg) /e \ T
1 /1 1
—1)....{ ==—r+1
2BI B A e <2 ) (2 )
% T rgo(_—l) I
£,4,6,. 3P 1 9 p+2 =% ﬁl+iz
v, { pi 3 (a) O T
p=0 2(T+r)4+p+1 | (ryre)/2 \T

p+2 3 (01490
a? (a) e..i[(p+1)ﬁ+ d(;j'l)]}

(ry 1‘2)3/2 o
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—_— 1y ,(‘11";'72
Zy(2) = o, [1—A—B](rrp) " e " 2
1(1 1 ,
& =0 rl pP=0 2 (S'!“P) +p +1
Pt 4 EaRp-Agiil) /2( “ )Hq e L I .—’( 4 s"')
qél p2g % ) (ryrp) ¥ e + . sec 5
{(3-1) - (3-r)
e 2BLcw ﬁ(_l), 9 R ) =i 2.4,(;2,..,1> 1
T S r! p=0 2(1+r)+p+i

{ (p—2)/2 1 p—2q+1

qél })_2‘]*1 (El

coe [ 2 e i (91499)/2—(p—2q)9] 1 —f T Lo
(ryry) . e / + 5 sec b e

Substituting relations (33) to (35) into Egs. (19) and (20) we obtain
the values for stresses and displacements in everyone of the slices cor-

responding to the part-through crack section of the plate.

DETERMINATION OF THE EXPONENTS S AND T

It remains only to define the values of the exponents S and T in rela-
tions (1). It should be mentioned at once that, due to the form of Egs.
(1), the extremities of each of the curves o(x) = f(x) and m(x) = o(x) along
the crack length, that is for x =0 and |x| = a, are independent of the values
of the exponents S and T. They depend only on the values of constants
A and B for the point x =0 and on the products AH and BL for the ex-
tremities [x| = a. Only the slopes of the curves o(x) and m(x) depend on the
values of the exponents S and T.

Moreover, it is worthwhile indicating that for the line-spring model
the assumption at the front ends of the crack, that the crack opening dis-
placement and the respective stress intensity factor there are zero, is of no
importance from the point of view of computing the value of the stress
intensity factor at the bottom of the crack front by the numerical solution
of the respective integral equation, because it may be readily shown that
for non-zero values of these quantities a constant of integration should be
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added in the solution of the integral equation, which does not influence the
value of SIF at least at the vicinity of the deepest point of the part-
through crack.

On the contrary, in our equivalent through-crack model the impor-
tance of the accurate evaluation of these quantities is primordial, since they
contribute mainly to the accurate evaluation of the various constants of
the solution.

In order to define the values of the exponents N and M we can write
Eq. (26) in the form :

| 71 1
=5 —=1)....{ =—r41 ,
2AH R 2 (2 ) (2 )2,4,!\,-,,1’ 1_
—A—B) — A -
R T Eo( ) rl 1,§0~(S+r)+p+1
36
{(3-0) (3 e0) %
_2BLE 2 2 7) 2 /3 1 _ _Ki®
T or=u rl p=02(T+r)+p+1l 5 (ra)le

and apply it at the extremities of the crack front for which [x|=a. If we

introduce the quantities :

\,— (1_A_B), B,= Ki(c,a)/
Gw(ﬂ'a)/g
§ ¢4
2 - 9 <2——1) (2 —r+1>2,4,6,..,P
18 =3 (=1 o o= 2(E+T)Fpt]
il 0 1
s 3 2 AT FpHt

and insert these values into Eq. (36), we obtain,

T) — [.\D_Bﬂ b

w

i

f(S)} >5r = 0 (37)

Since the exponents T and S must be integers, Eq. (37) will yield
the optimum combination for the integer values of T; and S; when the

difference between [(T;) and
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[Ao——BO— Z‘EH f(sj)J —2}73‘—1 is minimized, that is :
[f(T;) — [Ao —B, — & f(Sj)] ZTI;—'LJ ~ minimum (38)

for some pair of values for T; and S; running between unity and infinity.
In practical calculations these exponents depend on the values of the stress
intensity factor at the botton (x =0) and the extremities (|x|=a) of the
elliptic part-through crack.

Next we define the value of the stress intensity factor K; at |x| = a
from either Irwin’s formula [2], or any other approximate relation [7], or
from a convenient experimental procedure [23, 24]. As soon as the accu-
rate value of K! at |x] =a is determined we can proceed numerically to

find the minimum of the expression of relation (38).

RESULTS AND DISCUSSION

In order to show the potentialities of the method at least for the
evaluation of the variation of the stress intensity factor along the front of
the part-through elliptic crack, we applied the model to some particular
concrete problem. The problem considered was of a thin plate, containing
a part-through elliptic crack with do/R = 0.5 and d,/a = 0.2, where d,
is the maximum depth of the part-through elliptic crack, h is the thickness
of the plate and a is the half-length of the crack at the front face of the
plate.

The particular values k(0), k(a), 8(0) and 8(a) in Eqs. (9) and (10) can
be evaluated from refs. [21] and [26], [27] and they are given by :

K (0) = Mg 65, (mdy [ Q) (39)

K§ (a) = M, 6., (=dy | Q)'/2 (40)

() = 20D 1y (D)), (1)
2

3@ =pla@l (42)
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where M, and M, are the so-called magnification factors [8-10], which can
be evaluated as discussed before. The constants o« and B represent, the first,

—1 —1
a shape factor, which varies between 2[1 - ( d(&{a )} and [1 -+ <_d((,T/a_)} ,

as it has been discussed in ref. [21], and the second a singularity-correction

factor, which varies between 0.38 and unity, as it is given in refs. [26]
and [27]. For our case we have chosen o« =1 and p=m=/8. Moreover, g, is
the stress at infinity corresponding to the caustics at A and B, and ® and Q
correction factor sintroduced by rvefs. [8 - 10], [21] and [30].

In our model we have assumed that the thickness-variation at the
neighbourhood of the end-points of the crack is not zero, fact which was
confirmed by experience with caustics, and forms a small shallow hill (see
Fig. 3a). It is reasonable to accept that this hill-like zone has a size of the
same order of magnitude of the plastic zones developed at the ends of the
front-lips of the crack. The thickness variation at the ends of the crack front

are given by :
d(a) B do [ ( Ty >—2}1/2 i
(1 (43)

where r; is the radius of the unitial curve creating the caustic at the
extremities of the crack-front face and evaluated by assuming equivalent
plane-stress conditions for the weak-singularities at these points.

Then, the unknown quantities may be readily evaluated and thi are
given as :

A =0.10823, B = 0.76557, H = 83.93098 and L = —13.39506

Moreover, for a number of terms in the truncated series R = 30 and
P =50, the exponents T and S can be approximately defined from Eq.
(38) and they take the values :

T=21 and S =20

From these values the variation of the normalized stresses o(x)/o,

and m(x)/c,, can be evaluated and they are plotted in Fig. 5, whereas the
s

values of the normalized stress intensity factor k(x)/cw(td“> along the

Q

whole crack front may readily be derived and they are traced in Fig. 6.

17144 1983
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Fig. 5. Variation of the normalized stress o¢(x)/6,, and moment m(x) oy
along the crack-axis.
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If one considers the fact that up-to-now a closed-form solution of the
problem of a part-through crack is as yet missing and the existing
approximate solutions either require large amounts of computer time, as
mentioned before, or yield results within unsatisfactory accuracy, the solu-
tion given by this model may be considered as a good progress to the
solution of the problem, since not only gives a simple and convenient
method to analyse the problem of the part-through crack, but also results
within an acceptable degree of accuracy. The results of this paper fit better
with the results given in refs. [30] and [31], as they have presented in
Fig. 6. The major discrepancy between these results and those of this paper
is that a slight knee appears at the extremities of the front lips of the part-
through crack at values x/a=~0.95.

The discrepancies between the results given up-to-now in the various
papers, concerning the values of SIF’s, as these were found either by empir-
ical formulas, or by approximate numerical solutions, were sometimes very
obvious, with some results being in contradiction with others, especially when
compared with experimental results. For instance, the discrepancies of the
SIF between the finite-element alternating method given in ref. [28] and
the photoelastic method, given in ref. [22], attained values appoaching 24
percent at the deepest point. Furthermore, it is unacceptable that the SIF
at the deepest point of the crack is lower than the SIF at its extremities
on the front face. These results are given in ref. [28], and they were
compared with the experimental results of refs. [21] and [23], for an elliptic
part-through crack with d,/h=0.75 and d,/a=0.50. Although Smith
et al. have already indicated that the experimental results given in their
paper [23] should be somehow lower near the front surface of the crack
than the real ones, however, it is impossible to accept that the SIF at the
deepest point of the part-through crack may be lower than that at the
extremities of the crack at the front face.

However, an effort is now spent to improve the model by expressing
the complex stress functions and the components of stresses in closed-form
expressions and, furthermore, the model may be combined with experi-
mental measurements from caustics created either in the front, or the rear
face of the plate, or along the internal front of the part-through crack, which
will yield accurate and reliable results for the values of the unknown coef-
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(b)

Fig. 7. Interferograms of a laser light beam passing through the part-through crack.
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ficients. In this way the combined model solution with the experimental
values shall constitute a completely independent method.

Indeed, the non-zero elevations at the end-points of the front-config-
uration of the part-through crack are directly related with the singular
behavior of the stresses in this region, which is intimately related with the
regional caustic created at these extremities and it is exemplified in Figs.
3a and 3b. Moreover, the COD of the crack front can be readily evaluated
by the interferogram and the pseudocaustic of Fig. 7a and 7b and this will
yield the values of SIF at ¢ = 0° and other angles.

Finally, it should be emphasized that the complexity in the solution
of problems of internal or part-through cracks due to their three-dimen-
sional and sometimes non-symmetric character of the stress field creates
considerable difficulties in the analysis of the stress field along the crack
front and especially along a boundary layer close to the plate lateral faces
where the state of stress is rapidly varying and as yet unknown. Therefore
due to this also fact numerical solutions at these zones are always in ques-
tion as this has been clearly emphasized by Sih [32, 33]. According to this
analysis the SIF and the state of stress become functions depending on the
thickness-coordinate and they are rapidly diminishing along two boundary
layers close to the free faces of the plate. In these zones the SIF diminishes
rapidly and it takes values much smaller than those corresponding to the
generalized plane-stress case. This fact implies to conjecture that the three-
dimensional and non-symmetric character of the part-through crack should
be considered in the solution and especially in the vicinity of the end-points
of the front confignrition of the crack, where plane-stress or Kirchkoff
or Reissner plate Lending conditions are no longer warranted. This
peculiar situation may be successfully handled by the data derived from
caustics which then will improve significantly the accuracy and reliability
of the results derived from the model.

IIEPIAHYIX
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