436 INPAKTIKA THXE AKAAHMIAZ AOGHNQN

MAOHMATIKA.— On the properties of certain functions orthogonal
over circular domains. Generalisation of Zernike polyno-
mials ', by Nicholas Chako*. >Avexowvddn w0 1ol “Axadnuaixod

%. 70, ITviaguvod.

In the theory of diffraction of light or electromagnetic waves by

circular apertures and discs we meet certain types of integrals of the form

5 +.V e dt
1 Im , 0 y Zy — m k t k t - tiu_ﬁT—*, 7, <
O Tnpolend) = | T (ot Ja(kat 2. =50

where o, z are cylindrical coordinates, m, § and ¢ are real constant
quantities and a is a fixed constant, the radius of the circular domain
(aperture or disc). By choosing the parameters appropriately, the inte-
gral (1) is found to be a solution of the axial Helmholtz equation and
in addition it will satisfy the Sommerfeld radiation condition and the

Bouwkamp - Meixner edge condition and, either of the boundary condi-
Ju
0z
if u is expressed, u(x,y, z) = Im,p,o exp(ime). The purpose of this paper,
however, is not the discussion of (1) which is done elsewhere [1], but

to study the properties of certain functions and polynomials (hypergeo-

tions: u=20, or - = (0 on the screen of the aperture or on the disc,

metric) derived from it.
Let us consider the following function defined by the integral

0

(2) (;m,ﬁy\’ (Qa a) = Jlll (Qt) J[i (at) tm+2\l+l_ﬁ dt,

o

which is obtained by differentiating (1) with respect to + z and letting z
tend to zero. In (2) k=1 and 26 =2v+4+ m-1. The function Gu,p,v

# N. CHAKO, ’ISi6tnTeg cuvaptcewy Tivwy o6pBoywvinwy évtdog nuuAudy e-
Slwy' yevirevoig T@v moAvwvipwy Tod Zernike.

1. After modifications, the contents of this paper are taken from pa-
ragragh 5. of Chapter VIIT of my principal thesis for the «doctoral d’Etat és

sciences» (1966), Sorbonne.
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is discontinuous on the rim of the aperture or the edge of the disc.

Evaluating the integral, we obtain the following expressions :

(3) Gm,ﬁ' (Q, a) — % (z)ﬂl+2v+1‘f‘<g>m r( r (nl+v+1)

a a m+1) P({f—m—v)

:F <m +v1, mdv41—B; m4-1; %) -

a‘l

1 ) m+2v+41—£ g m r(n1+v+1) 1 ——i B—m—2v—1
< ) a) T'(m+1) T(f—m—v) >

-_*Fl <—V) ﬁ‘—\’, m+1 ) Q_g)
a
valid for 0<¢<a and p—m —1—2v>—1.

On the other hand if ¢>a, we have

. o 1 a B—m~—3(v+1) a m+-2(v+41) I‘(nl_{_‘,_}'_l)
W Gmed=g(3) " () remTew

oF <n1+v+l, v1; m+41; z—2> =
1
g <v—{—?)n T'(m+v+1) T (v41)
o 2 r(+1)
F (mevbL v w5

provided v is not a positive integer, otherwise it vanishes. Consequently,

if v=n, (n=0,1, ...), we obtain

<5) (;m‘[j,u (Q, a) =
- l— E)m«%?n-}-l—ﬁ —g—>m P(n1—|—n+1) (1 - 9'2 B—m—2n—1
T a ( a (a £ (m+1) T(—m—n) a2>

JE, <—~n, p—n; m-+1; %) if o<a

=0 if g >a.
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On the other hand if ¢—>a our function becomes

(6) Gm,p,v(@—>a,a) =
1 (2 )‘“*2”"_5( 0 )"‘ sin(B—m—v)a M(m+4-2v4-1—0) . [1 - Q_fr——m—Wﬂ

a\a a T o—>a a’

Therefore, Gm,p, (0,a) becomes singular at the edge of the aperture for
f<m-2n+1, whether v is integer or not. If f=m-+2n-4+1, Gup,n
vanishes as ¢ tends to a and thus, we obtain a function which is finite
within the circular aperture or disc, and vanishes on the boundary,
as well as, on the screen itself.

Suppose that v is a positive integer n. In this case the hypergeo-
metric function appearing in (3), namely, ,F,(—n, f—n; m+1;x?,
d— —z—, reduces to a polynomial of degree 2n in x. Therefore we can
express Gm,p,n in terms of the Jacobi polynomials Gy (a,y,x?). Since

the Jacobi polynomials are expressed by
(1) Gn(a,v;x) =,F (—n, at+n; v; x), (0<x<1)

provided y=£0, —1, —2, ..., —n-41, we obtain the following rela-
tion between the Jacobi polynomials and Gy, :

(8) Gula,v; x) =

(2T (y) Dlatnt1—y) o V) < o Q)
= alx) (?) i e A Gy L

To obtain Gu,p,n in terms of G,, the Jacobi polynomial, we must

put a=f—2n, y=m-4 1. The result is

(9) Gm,ﬂ,n (Q, a) ==
o i z m+2n+1—f _g— m I‘(m+n+1) { —Q_i f—m-—2n—1
T a (a ( a) T(m+1) T(—m—n) a*)

G ({5—2n, AR —g—)

From the orthogonal properties of Jacobi polynomials, we derive
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the following orthogonal relations between our functions, namely

a 2\y-a
(10) 5 [Gv~1.u+2n.v+n—17(9,a) Gv~1,a+2p,v+p—%(9,a)} <1 = *ET) ode =

=0 if p=sn
=uN® 4 p=n
where N? is equal to

0y w= L () Tln Pl
a’ \ a’ T (a+n) T (a+n+1—y) (a42n)
Replacing « by §—2n and y by m-+1, we find the following

orthogonality relation for Gu,s,ns(0,a) (*)

gdo=0 if psEkn

2 }m+n+p+1—-l3
=N if p=n

12) (" Gupale,d) Gaploa) [1 =&

o

with

1 (a! >ﬁ—m—2n-1 r(m+n+1) r(n+l) 1

(13 i Ly o T(G—m—n) T(f—n) B

From (12) we conclude that the functions' Gn',,g',,, form an orthogonal

set over a circular domain of any radius a, with the weight function w(o),

@ Jeainbirp

(A) wlo) = o [1 e ;;} .
We now define a function Ku,g,n. to be

1 QZ m+2n-+1—f .
(14) Kmvﬁrn (Ql a) == FGmyﬁfn (Q)a) [1 - ?J ? \/-Q

and in general

B i =
(15) Koyin(0,2) = K(a, v; o) = l\_TGy—l,eﬂ—2n,v+n— 71, (0,a) [1 o gz J o \[Q

(*) We would like to remark that the notation used here for the function
Gm,p,n corresponds to Gm,g,m+n+ !/, of the thesis. The last index of our function
is equal to half the exponent ¢ appearing in the integrand of (2).
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These functions form an orthonormal set over a circular two dimensional
domain. We have

(16) Sam,ym(e,a) Kewp(@,a) do=0 if p+n
. =1 if p=1 .

So far we have let the parameter p to be an arbitrary real quan-
tity. In the following discussion we shall let f§ to assume certain values
for which the function Gu,p,n plays an important role in the theory
of diffraction, as mentioned in the beginning of this article.

Before we take up the special cases, let us write (3) in another
form by replacing the hypergeometric function by its series, which redu-
ces to a finite form when v is a positive integer. We have

(17) (;m,ﬂ,u (Q,a) = Gm,B.m-{-n-{-—;— (Qaa) =

o 1 2 m+42n+1—8 r(m+n+1) r(n+1) & m
. Z<?> T (B—n) T (B—m—n) <a )

3 1B—m—2n—1 =2 . I'(r—f—ﬁ—n) 0 2r
[1 o TH Z (=1}, I'(r+m-+1) T(n+1—r1) (I)

r=o

It is easy to show, from (17) that as ¢ tends to a, we obtain
formula (6). Moreover, if f=m+2n+41, (17) reduces to a polynomial
of degree m - 2n. In this case, Gug,u reduces to an orthogonal poly-
nomial with the weight function @, that is:

(18) 57 Gump,n (0,a) Gm,8,p (0,a) pdo =0 if p#n
S S
m-+42n-+1

1 :
= — it p=n
a

Case I TLet [i:m-{-zn—{——g—.

For this value of [, Gum,p,n reduces to a hypergeometric polyno-

mial multiplied by V1 — x*, (x = i) )

(19) Gm,m+2n+%ll (Q)a) =

2L T (m+n-+t1) . (&)m\f—l—w? oF (—n, m + n+%; m+.1;x2)
o1 (1) r(n +7) -




SYNEAPIA THE 14 AEKEMBPIOY 1967 441

Thus Gm,m+2m+2 n vanishes as ¢ tends to a and its weight function

according to (12) or (A) is equal to o (l—xz)—‘;—. The normalisation

constant N is found to be as follows
(20) S I‘(m—{?:n—l—l) P(n+1)3 1 .
I‘(n—{——2—) P(n1+n+72—) m—f—?n—{——z—

2a

Case II Let lj=m+2n+%.
For this value of 8, Gm,p,n is
(21) C’m.m—}—Zn +—;—, n (Q,a) —

_2 I'(m+n-41)

m b § 1 )
1 (%) [1 —%J_?2Fl<_n‘m+ll+é;m+l;%).
a P(1n+1)r<n+2) 9

The function Gm,m+zn+;_,n becomes singular as ¢ —> a. Its weight

function is ¢V 1—x" and the normalisation constant is

N 2 'm+n+1) T'(n41) 1

a’ r(n—{—%—) I‘(m—{—n—{—%) m—}—2n-{—%-.

Case IIT

A special but interesting case is when we put a=1 and m+2n = p.
In this particular case our function becomes a Zernike polynomial.

It is not difficult to deduce the following properties of Gu,p,n:

(22) 57 Gum,g,n (1,a) Jm(ou) u du = gm+n—8 Js (ag)

o}

and as special cases, for f=m-+2n, we get
(23) S (;m,f’y“ (U, a) Jlll (Qu) du= Jm-l—2n (Qa)
and for f=m-2n+1,

(24) j Gm,m+2n+1,n (u,a) Jm (Qu) wdil = lﬂ—_?n@i(a_Q) .
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Now if we put m+2n=p, a=1, formula (24) becomes

a=1
(25) S Gy, 257 (1) T (o) 1 d = J2211Q) & (©)
or, in the notation employed in the thesis,
(25’) S Gm!p_H‘m-l-2p+1 (ll) T (Qu) @ 88 = JP+; (Q) )

This formula is equivalent to that obtained by Nijboer [3], which reads

(26) {20 Jalow) wdn = (07" Lol

Therefore the Zernike polynomials can be expressed as follows *

n—im

(27) Z0' (@) =(—1)F Gum,n1,2t0¥1 (0) (0<e<1),
did fi—mm=23p; (p==0, 1,2, .).

From (22) we can derive a number of interesting formulas. Since

Gm,p,m+,,+_;_ = Gum,p,n 1s expressed by the integral
@) Gupmenr b (08 = [ Tuled) Jo@) e,

we can replace Jg(at) tm++1—F by the equivalent expression (22) and
obtain **

(29  Gmpminiy(02a SJ (et)tdt SGm pomin < (1,2) Jm (tu) u du.

This relation resembles the Fourier-Bessel (transformation) integral.
In fact, if our function satisfies the Dirichlet condition, the integral

m+n+1

* Using the integral representation of Gm,n+1, (g, a—1) we may

express the Zernike polynomial in an integral form
n—m

Zi@=A [ Tmiet) ) at,  A=(=)7
This is the integral representation of the Zernike polynomials.

#+ The interchange of integrals is allowed because the function is absolu-
tely integrable in the interval [0, a], since B—m—2n—1>—1.
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expression in (28) is equal to the average of the function evaluated at
0+0 and ¢—0 if 0<p<a; itis equal to half the value of the function
at o=a—0, if o=a and half the valueat ¢=0+, if o=0. We have
seen that for ¢>a, the function vanishes.

We remark here that for the special values of [ﬁ:m+2n+——g—

and nl—{—?n—l——;—, the Gm,p,n have also been studied by Nomura and his

collaborators [4] and myself [1].

From the precedeing analysis it is not difficult to construct poly-

nomials for annular circular domains.
e 1 3
Finally, one can express Gu,p,, for ﬁznl—}—Zn—l—T)— and f=m-F2n+4 —,

etc., in terms of associate I.egendre polynomials. For example :

(30) C\"m, m-+-2n 4 g—, m-n +-;— (Qv a) -

- m-—l- 2. (n + ) 3 Pm+2n+1 (\[1—2('), for 0 < & < L
9™ F a3 I‘(m—}—n—l—7)
—0 i o K.
= if “p>a (x k- )

To obtain formula (30) one utilises the properties of hypergeometric
functions. One could also deduce (30) by following Whittaker [D], for
a solution of Laplace equation in cylindrical coordinates (o, ¢, z) is given
by an integral of type (1), where in place of the exp (iz \[it_f) one

substitutes + zt and drops out the denominator V t*—k?, and after evaluat-

ing the integral let z tend to zero. This limiting value is the function
Gum,p,n. On the other hand the Laplace equation is separable in prolate
spheroidal coordinates (& n, @), so a solution is also given in terms
of spheroidal coordinates of the form F] (§) H)' (n) e™® (Meixner and
Schifke [6], Nielsen [7]). Then Gu,p,n would correspond to the limiting
value of the product ' (§) H'(n) as £— 0, since letting £=0 is equi-
valent to letting z=0, for g=aV (14+€) (1—n’), z=atn. The limiting
value of FI'(E) H] (1) as €—> 0 is the right hand side of (30).

The polynomials given by (25) play an important role in the theory
of diffraction of electromagnetic waves by circular aperture or discs
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[2,4,8] and in many problems of mathematical physics and on analytic
theory of numbers.

It should be noted that these functions are not only generalisations
of Zernike and Jacobi polynomials but also of a number of functions
employed in physics, such as Iommel, Struve and Llambda functions,
etc. In fact, one can use this functions in treat the diffraction theory
of aberrations where the use of Zernike polynomials fails as we have
shown in the thesis and in reference [8].
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SUMMARY

In this article we have given some of the most important pro-
perties of certain functions which are orthogonal over a two dimensional
circular domain and the polynomijals associated with these. These



SYNEAPIA THX 14 AEKEMBPIOY 1967 445

functions are of some interest because they occur in many problems
of mathematical physics and especially in diffraction problems. It is
shown that the Jacobi and Zernike polynomials are special forms of

these functions.
*

‘O CAradnuainog %, "08wv ITvAapvdg xata v avaxolvmory tiic ¢ dve
goyaoiag elme ta ndrmd :
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mrov OV ouvagtioewy Tovtov’ Gmodeixviel 88 mog tovtoe Ot T molvdvupa
T®V JACOBI zal ZERNIKE &ival eldixal weQuatdoel ToloUTmv cUVOQTHOEMY.
‘H pekétn tdv ovvaotijcemv tovtov magovotdlel dvdiagpéoov, didtt avror Eugavi-
Covrar €lg modda mooPfAjpata tiic Madnuatixiis Puoniic nal & eic moofAnuara
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