IMPAKTIKA THX AKAAHMIAYX AG®GHNQN

ZYNEAPIA THZ 12" @EBPOYAPIOY 1987
nPOEAPIA KONETANTINOY MITONH

MHXANIKH. — Failure Criteria in Fiber Composites, by Academician Pericles

S. Theocaris¥

ABSTRACT
The paraboloidal failure criterion for isotropic materials was extended to transtropic mate-
rials by maintaining the direction of its axis of symmetry and the form of its surface. It was
shown that the paraboloid of revolution failure surface becomes an elliptic paraboloid surface, it
has its axis of symmetry parallelly translated to the hydrostatic axis and its sections normal to
this axis become ellipses of ellipticity and orientation depending on the amount of anisotropy of

the material. Examples are shown from graphite-epoxy composites.

1. INTRODUCTION

Failure criteria are based on Hill’s well known theory for anisotropic metals [1]
which is based on Mises’ first attempt to formulate failure in anisotropic solids [2].
While Hill’s criterion does not take into account the strength differential effect appa-
rent in all solids, Hoffman’s criterion presents a further improvement by incorporating
this effect in Hill’s criterion. This was achieved by adding the linear terms in the
quadratic expression of Hill’s criterion [3].

The tensor polynomial criterion introduced by Tsai and Wu [4] constituted a

flexible and mathematically elegant version of a criterion, formulated by means of the
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Cartesian components of the stress tensor, is represented by hypersurfaces in the
six-dimensional stress space, impossible to be readily visualized geometrically in a phy-
sical stress space. Only plane sections of this hypersurface were therefore studied
representing quadric surfaces in the (oy, 6y, 6xy) parametric space. However, even
these subspaces do not yield a direct interrelation with the directions of the externally
imposed loading and the material strength directions, a drawback causing the necessity
of meticulous and delicate experiments for its definition.

Theocaris [5] has presented recently a paraboloid of revolution failure criterion
for isotropic bodies, which, later on, was extended to an elliptic paraboloid, convenient
for anisotropic materials [6, 7]. The physical basis and properties of this elliptic para-
boloid criterion is presented in this paper suitable for transtropic materials, as they are

the fiber-reinforced composites.

2. THE ELLIPTIC PARABOLOID FAILURE SURFACE

Consider a transtropic body with ot and oci the longitudinal (strong) failure
strengths in tension (1) and compression (c) and or2, oc2 its respective transverse
strengths on the isotropic plane, which is normal to the longitudinal (fiber) axis.
When the principal stress axes coincide with the material principal strength directions
the failure surface should pass through the points A, (o11, 0,0), Az (0, 612, 0), A3 (0,
0, or2) and Bi (-6c1, 0, 0), B2 (0, -6¢2, 0) and Bs (0, 0, -6c2). The equation of a
quadratic surface passing through these points and having its axis of symmetry parallel

to the hydrostatic axis (61 = 62 = 63) is given by [6]:
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Since relation (1) is valid only for coincidence of the principal stress directions with
the material principal strength directions, for the case of an arbitrary orientation of
these two systems another elliptic paraboloid is associated with these directions. This
paraboloid should have its axis of symmetry parallel to the hydrostatic axis and it is
expressed by the same relation (1) in which the appropriate failure strengths in these
directions were calculated by using the appropriate transformation and Hoffman’s cri-

terion.
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Therefore, for any orientation of the principal directions of external loading the
association of the conv:anient elliptic paraboloid defined with the appropriate strength
properties of the material along the principal stress directions yields a direct, clear and
comprehensive view of safe loading paths on the structure and the correct evaluation
of its respective load bearing capacities in these directions.

For plane-stress states of transtropic materials along a principal stress plane, say
the (01,02)-plane (63=0), the failure locus is derived as the intersection of the ellipsoid

(1) by the plane 65=0, it yields an ellipse whose equation is given by:
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For a complete understanding of the topography of the failure surface and especially
for the three dimensional states of stress, besides the principal intersections of the
elliptic paraboloid with the planes 6,=0, 6,=0 or 63=0, whose expressions are analo-
gous to relation (2), other interesting sections are worthwhile studying. Thus, the
intersections of the paraboloid either with diagonal planes, expressed by 61=62, 6:=03
or 63=a1, or with planes parallel to the deviatoric plane (61+02+03)=0 and expressed by
(o1+02+03)=k, where k is a constant, are necessary.

The intersection of the paraboloid by the diagonal plane 6,=c3, which contains
the strong principal o;-axis, is a parabola whose axis of symmetry is generally parallel
to the projection of the hydrostatic axis on this plane. For this particular diagonal
plane, containing the 6;-strong axis, this plane does contain both the hydrostatic axis
and the axis of symmetry of the parabola. In other words, this parabola splits the
paraboloid intq two equal and symmetric halves.

This parabola, expressed in the plane (51,6), where Ez\/§62:\/_263, is given by:

2 =2

2616 ~
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Introducing the characteristic quantities of the anisotropy of the transtropic material
we define the strength differential parameters along the strong direction Ry and the
weak plane Rr, as well as the single parameter of anisotropy of the transtropic material

Rir. These quantities are expressed by:

Ro =_0¢1 =_0¢c2 and Ryt =_omn (4)



XYNEAPIA THZ 12 ®EBPOTAPIOY 1987 133

With these definitions the distance d, normalized to the strong tensile failure stress,
o11, between the hydrostatic axis and the axis of symmetry of the elliptic paraboloid

for the transtropic material is expressed by:

c—dn=—9—‘[6RL{(1 — =) —Rur 0 — 4} 5)

Which, of course, for isotropic materials, where RL=R1=R and RL1=1 becomes equal
to zero. Indeed, the axis of symmetry of the paraboloid for isotropic materials coinci-
des with the hydrostatic axis.

Finally, the intersections of the symmetric elliptic paraboloid by planes (o1 + o2 +
63) = k along at distance p from the origin of coordinates to the hydrostatic axis are
ellipses, which, when projected on the deviatoric plane (61 + 62 + 63) = 0 are expressed
by:

1 1 2, a1 1 3v/3 o
\/§ (O'Tl GC1 + OT2 Gcz) X" +3 (O'Tl GCl  O12 Gcz)xy ks Z GTi6c1?Y +

+_\§ [(Gin__é%z.) - (_G%—Tld)]x +—\/2—5 [(—clﬁ—c—icz) — (—0'%_6_101)]}'+
p [k — 580 + 2 b — 5] — VB =0 =

Then, the distance p of the untersecton of the paraboloid by the hydrostatic axs from
the origin of the coordinate system (o1,62,03) is expressed by:
V3 )

i I

il
1 — E) + 2R (1 — E)

For an isotropic material relation (7) reduces to the well known relation [5]:

B = ®)
[}

R
V3 (R-1)

since oT1 = OT2 = OT, OC1 = OC2 = OC, RL = R, and RLT = 1

3. APPLICATION TO A FIBER UNIDIRECTIONAL COMPOSITE

As a typical example for applying the elliptic paraboloid criterion we use the data

known from a graphite-epoxy composite system, which is a transtropic material with
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the following failure strengths in its principal directions of anisotropy:

on = 103350MPa, Gc1 = 689MPa, o2 = 41.34MP3, 6e2 = 117.13MPa

and:
RL = 0.667, RT = 2.833 and RLT = 25.00. (9)

Figure 1a presents for the failure surface of this composite the intersections of
this elliptic paraboloid by planes parallel to the 63=0 plane at distances k from this
plane equal to k=-8cr2, -6012, 4612, -212,0 and 2612. The projection of the axis of
symmetry of the paraboloid, which passes through the centers of the elliptic sections
is inclined by an angle of 45° to the 6i-or 62-axes. Fig. 1b presents the intersection of
the elliptic paraboloid with the plane 63=0.

Exactly the same patterns we derive from intersections of the paraboloid with
planes parallel to the 6,=0 plane for the same parametric values of k, since the section
of the elliptic paraboloid by the 6,=0 plane is expressed by an identical equation.

All these intersections are ellipses with their centers lying on the axis of symme-

try of the paraboloid. This axis lies parallel to the diagonal plane (o, 6) at a distance
d=3.025611=3126.34MPa

from the hydrostatic axis.
The ellipse derived from the intersection of the elliptic paraboloid and the deviatoric
plane (o1+62t63)=0 presents the following characteristics:

The coordinates of its center in the deviatoric plane:

alom= — Mo fg . = — 0 -5}

= 6R 1 1
a/'-:\fL{R 1 — g — (1 ——=)] 1
Ga/ OTI — 18 LT( Rl) ( ) ( )
The major axis of the ellipse subtends an angle 0, with the projection of the 6-axis on
the deviatoric plane, which is independent of the particular mechanical characteristic
properties of each transtropic material. This angle is always equal to

0. = 30°
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The coordinate system (614,0.) is chosen so tha the o1.-axis corresponds to the projec-
tion of the oj-principal stress axis on the deviatoric plane, w;)ereas the 6.-axis corre-
sponds to the straight line coinciding with the projections of the 6;-and 63-axes on the
same plane. The positive direction of the o,-axis coincides with the positive direction
of the projection of the o3-axis.

Then, from the trihedron formed by the deviatoric plane, the (c1,614)-plane and
the plane defined by the oi-axis and the major axis of the elliptic section, it is easy to
define the angle 0, subtended by the major axis of the ellipse and the oj-axis which

again is a universal constant for all transtropic materials and equal to

0a = 52°12 (13)

The coordinates 1. and o, of the ellipse on the deviatorie plane for the composite

defined by the quantities (9) are as follows:

G)a:-z,() | 86’1‘;=-2705.70M Pa
6.=1.517611=1567.82MPa (14)

The elliptic intersection indicated in Fig. 1b is expressed by:
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The coordinates of its center and the inclination of its major axis to the oj-axis are

expressed by:

1 1 2Rt 1
(I — + (1 =
stxeyd) = — RiBur [RT ® R R‘[)]
4R2.. 1
o ®
[0 Ao +orna— ]
. L | -

and the angle 0. subtended by the major axis of the ellipse and the c-axis is given by:
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(MPa)

(b)

Fig. 1
(a) Intersections of the elliptic paraboloid for a graphite epoxy composite by o5=k constant planes.

(b) The failure locus in the (53=0) plane.
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The coordinates xc,yc and the angle 6. for the ellipse of Fig. 1b are evaluated as fol-

IOWSZ

J4an™(0.00684)

xc=0.147a1) yc=~0.0360'r1 0=

The angle O is less than 10 minutes, that is the major axis of the ellipse is parallel to
the oj-axis of the principal stress space.

From Eq. (6) it can be readily also derived that the distance between the mtersec-

tion of the elliptic paraboloid and the hydrostatic axis and the origin of the coordinate

system (o1, 62, 63) is expressed by:

= V3 a7

1 1

1 1
Fm — de) + 265 — )

It is obvious from this relation that for transtropic materials, which are more and
more anisotropic, and especially as their strength differential parameters Rr and Rz
take higher values, the distances of the vertices of their failure surfaces approach
closer and closer the deviatoric plane. Then, the elliptic paraboloids become more and
more shallow.

On the contrary, for low anisotropies and small strength differential parameters
the elliptic paraboloids have their vertices receding to infinity, their distances from
the hydrostatic axis are reduced and their elliptic shapes tend to circular ones, having
as a general limit the cylindrical surface defined from the Mises yield criterion, valid
for isotropic materials without any strength differential effect.

Fig. la indicates this phenomenon presenting sections of a strongly anisotropic
material, where the values of strength differential parameters Ry and Ry recede stron-
gly from unity, the one being below and the other above this limiting value.

It may be readily derived that, as these values recede from unity and as the
coefficient of anisotropy of the material Rir is increasing the shape of the elliptic
paraboloid becomes more and more oblong, so that its elliptic sections by the principal
stress planes or by the parallel to the deviatoric planes take the shapes of ”cigars”.

Moreover, from the previously derived relations it may be argued that the term

{RLT (1 — 1/R1) — (1 - 1/Ry)}, or similar to this term expressions, is critical to the
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properties of the material. It may be established that the part depending on the strong
strength differential parameter (1 - 1/RL) contributes only a few percent to the cha-
racteristic dimensions of the failure surface. For instance, for the graphite-epoxy com-
posite this term contributes only 3 percent and may be eliminated without introducing
great errors.

Therefore, it may be concluded that, as the parameter of anisotropy is increasing,
the other important characteristic quantity defining the failure surface of a composite
is its transverse (weak) strength differential parameter.

Figure 2 presents the intersection of the elliptic paraboloid by the diagonal (s1,6)-
plane for a KEVLAR 49 (ur=0.60), which at room temperature has the following mecha-
nical properties 611=1379MPa R1=0.20, R1=4.662 and Rp1=46.587 [8].

g

(MPa)

1501 hydrostatic
axis

, ']
250 (MPa)

Fig. 2
[ntersection of the elliptic paraboloid failure surface on the diagonal (62=03)-plane for KEVLAR 49

(ur=0.60) transtropic composite.
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The distance d/o11 of the axis of symmetry of this elliptic paraboloid from the

origin of coordinates is given by

d=2.1916711=3021.39MPa
Again, for this composite, whose strength differential parameters R. and Rr deviate
strongly from unity on both sides, the paraboloid, whose section along the diagonal
(01,0)-plane is given in Fig. 2, is again a shallow one.

Figure 3 shows another aspect of the shape of the paraboloid by presenting secti-
ons of the elliptic paraboloid for the graphite epoxy composite by planes parallel to the
deviatoric plane for parametric values of k=-6c2, 0 and oca2. Again, the presented elli-
pses have the shape of cigars. It is worthwhile indicating again that this paraboloid has

its vertex on the tensile-tensile-tensile octant, since the ellipse for k=oc; lies incide the

4%

other two ellipses.

ellipses

02

Fig. 3
Intersections of the elliptic paraboloid failure surface for the graphite-epoxy composite by planes parallel to

deviatoric plane (o1+62t63)=0.



140 IMPAKTIKA THE AKAAHMIAYX AOHNQN

Finally, Fig. 4 presents the variation of the distances p of the paraboloid along the
hydrostatic axis and the distances d between their axes and the hydrostatic axis, nor-
malized to the failure strength o1 of the material, versus the parameter of anisotropy
Rir for a transtropic material with Rp=0.667 and R1=1.60. It is clear from this figure,
again, that, while the distance d increases linearly with the parameter of anisotropy

Rir, the distance p reduces very rapidly as Ryt is increasing.
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The variation of the distances p and d of the utersections of the paraboloid wote the hydrostatic axis from
the deviatoric plane and the axes of the paraboloids from the hydrostatic axis respectively, normalized to the
failure strength o1, versus the parameter of anisotropy Ryt for particular values of the strength differential

parameters Ri and Rr.
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4. CONCLUSIONS

In this paper it has been shown that the failure surface for anisotropic materials,
and especially for transtropic materials, is an elliptic paraboloid surface whose axis of
symmetry is parallel to the hydrostatic axis.

The intersections of this surface by planes normal to the axis of symmetry are
ellipses of the same ellipticity and orientation. For the transtropic materials the orien-
tation of the major axes of all such ellipses is constant and equal to 6;=30° to the
projection of the strong principal axis on the deviatoric plane.

The distance, d, between the hydrostatic and the axis of symmetry of the parabo-
loids increases with increasing anisotropy. Similarly, the ellipticity of the intersections
of the paraboloid increases and they take the form of cigars, as the strength differen-
tial parameters recede from unity and the parameter of anisotropy is increasing.

The critical quantities influencing the shape and position of the elliptic parabo-
loid are mainly the parameter of anisotropy and the transverse strength differential
parameter.

Higher anisotropy yields shallow paraboloids, whereas weak anisotropy results in

oblong shapes along the hydrostatic direction.
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MNEPIAHYH
Xapaxtnpiotixai idiétnteg TOV xpLTNPiwy dotoying ivwddv cuvbBétwy VAKGOY

To eic Tov ydpov TGV xuplwv Thoewy TapaBohostdic xpLTNpLov &GTOYLAG TGV
i60TpéTOV UAGY, TO 6Tolov TepLeypdpy cic TpoyevEsTépaY LoV AvaxoivwoLy, et
\ \ b ’ \ 5 \ bl ~ A bA ’
tag Baoixds iStétyTag vi eivar Tapaforoetdes éx meptoTpopiic né dova cuppetplag
A 3 A A \ ’ 9 \ b ’ b \ ~
Tov UdpooTaTixoy &Eova 61 = 62 = 63. TO xpLTpLov adTd Emexteivetal elg THY Tapol-

b ’ A\ \ 3 ’ \ 4 \ \ b f 4 \ 3 3 ’ 3 ’
Gav dvoxoivwowy St T& dvieéTpoma VA ol idtatTépwe SLd T EYxapoiwg L66-

~ \ e ~ bd ~ ’ ’ i € ~ \ b
Tpoma TotadTa, T& Omola dmoTeroly weydAny xatnyopiav cuvBETwY LALXGY wE Evi-
oxboetg, Aemtag vag. Ta OAxa adtd ouvéBahav peyddwe eig Thv odyypovov
Bropmyaviay TEHY xaTAOKELEY, YPNOLLOTOLOVULEVR GNUEPOY EVPEMS ElG THG XATU-

\ 3 ’ bd / o~ ! ’ bd \ \ ’

GXEVXG ADTOXLYNTWY, JEPOTIAAV®Y, TAEUGTGY UECKY, SLAGTNUOTAOLWY GAAX ol LG

e b A A
TEGAY EAANY GUYYPOVOY XATAOREVTY.

’ \ bd 7 b \ 3 /’ o \ \ b
Ei¢ mhv dvaxoivwoiy adtiy dmodevdetar 6Tt T0 wapaoroctdec éx TepLoTPO-

~ L VR g N N9 ’ ¢ 7 4 3 3 \ ’
@¥ic, TO loydov ik T& LodTpoma VA, peTatpémeTal eig éNAettTinGy TTopaforoctdic,

~ t ’ € A 7 X ! ! \ \ € \
tol omoiouv 6 &Ewv cuppetpiog eivar TAéov TapdAAniog TEog TOV LEPOGTATIXKOY
» e b3 ’ ~ b3 ? 4 3 ~ b ’ ~ \ \ \ b
&Eova. ‘H dmédotacic tév &Ebdvay adtd@y adfdvet ypapuxde we tov Babudy dvico-

’ ~ e ~ e \ ~ ~ 7 \ \ ; &
tpomiog Tob VAxoD, xal %) xopue) Tob TapaPoroetdols wAnoLdlel Tpog TO &ToxAlvoy
bl ’ ~ ’ \ € ’ \ 3 \ ~ bd ! o A ke ’
énimedov TAY TAOEWY xal Emopévmg T dpyny TGV &Ebvwy, dtav ¥ dvicoTponia

3 \ e 2. ’ \ \ b A »” ~ 3 ’ \
a0ty adbaver. [lepoartépm, St THy adTiy abEnoty T¥c dvicotpormiag T6 TapafBoroet-
3t¢ nobioTaTton dvortoTEpOY Xl PYY6TEPOY.

Eidudic, Su& T EMAetmTind mopaforoetdy) T& mEpLyphpovTa T& EYrapoing Lo6-
TpoTa VA&, ol peydhol &Eoveg T@Y EAAeLmTIXGY Towdy ToD mapafohoetdole Vo
b !’ ’ \ \ € \ " /7 3 !
e¢mnédwy xabétwv mpog T6 VdpooTaTidy &Eova cuppetpiag Twy elvar xexAipévol
e b ! ~ AS 1 X ? b1 ’ \ ! \ ’
O1o yoviav 30 potpdv g Tede TO Staywviov Entimedov TO wepthapfBavoy TOV 61 —xU-

A
pLov &&ova.

A Ty TAnpecTépay weRETNY THG Lop@Tg xal TGV ISLoTTWY TGV Emipaveléy

t 3 ~ € ’ ’ b3 \ \ bl ’ \ \ \
O TEY al xVpLo Topat Twv &d T énineda (o1, 62), (02, 63) xal (03, 61), xabbg xal
& xOpra Staywvia Enimeda (o1, 623), (62, 613) xal (03, 612), weretdvrar. Kat’ adtodv

\ ’ ’ o € \ \ ~ bl ~ b ~ ’ \
TOV TPOTTOV GLUTANPWOVOVTaL BAot ol Suvatal Topal TGV Emipaveldy adTdy eig TOV
x®pov xal ai i3éTnTeg TAY EMAemTIGY adTGY TapaBohoetdidy TpoBdAhovTor Ko~
TAAANAGG.

! b4 o~ ’ ’ ~ € ~ ~ 4 ! e
Mopadeiypata éx Tv cuvbétwy ivawdav DAY T xatnyoptac cuvbétou HAL-

xoU €€ iv@v &vBpaxog xal emoketdidy pnTividy, xabng xal Tob edpéwe Stadedopévou



2YNEAPIA THX 12 ®EBPOTAPIOY 1987 143

ohepov cuvbétou Aol Omd Ty dvopasiov KEVLAR 49, didovtar, xal éEetalovral
L e 14 ’ b ’ \ \ kd ’ b A ~ \
ai 1316TYTéC Twy &y cuvapTHoEL PG T& dvtioTouyx EAhetmTind TapaBoroetdd, Ta

TEPLYPAPOVTA TOV YGPOV &vTOoY TG Xl XaTd GUVETELAY Xal TOV Y BPOY AGTOYLAG TWY.
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