Τέλος μνημονευτέον ότι διαρχούσης τῆς ἐπιχειρήσεως ταύτης κατὰ τὸ 1926 κατωρθώθη νὰ ἀνευρεθῆ καὶ διαφυλαχθῆ μέγας ἀριθμὸς πολυτίμων ἀναγλύφων καὶ άλλων γλυπτικών μελών έκ της περιφήμου έκκλησίας τοῦ Ἰουστινιανοῦ τῆς ἀφιερωμένης είς τὸν Θεολόγον (τὸν Εὐαγγελιστὴν Ἰωάννην). Διαρκούσης τῆς βραχείας έλληνικής κατοχής ήρχισεν ό γνωστός ἐν ᾿Αθήναις ἀρχαιολόγος Καθηγητής Σωτηρίου νὰ ἀνασκάπτη τὴν ἐκκλησίαν ταύτην, τῆς ὁποίας ὁρατὰ ἦσαν μόνον ἐν τῷ λόφω 'Αγιασουλούκ τεράστια έρείπια τῶν ἐκ πλίνθων κατασκευασμένων τρούλλων της. ('Ο καθηγητής Deissmann ἀνέφερε ἐνταῦθα τὴν ἐργασίαν ταύτην καὶ τὰς δημοσιεύσεις τοῦ Ελληνος άρχαιολόγου μὲ ἐπαινετικωτάτους καὶ συμπαθεστάτους λόγους καὶ ἐχαρακτήρισεν αὐτὴν ὡς μέγα κατόρθωμα τοῦ ἑλληνικοῦ ἐκπολιτιστικοῦ πνεύματος1). Ὁ Καθηγητής Σωτηρίου μετά τὴν φοδεράν καταστροφὴν τοῦ 1922 ἡναγκάσθη νὰ ἐγκαταλίπη ἄτελῆ τὴν ἐργασίαν ταύτην ὡς πρὸς τὸ πλεῖστον αὐτῆς μέρος. Πλῆθος μιχρών χειμηλίων ἐστέγασε τότε ἐντὸς παλαιοῦ Τζαμίου. Τὸ Τζαμίον τοῦτο μετὰ τὸν πόλεμον έχρησίμευσεν ώς κατοικία προσφύγων καὶ ἤλλαξε πολλάκις τοὺς ἐν αὐτῷ ένοίχους. Τότε δὲ ἐξαιρουμένων βαρέων τινῶν ἀρχιτεχτονιχῶν μελῶν ἐξηφανίσθησαν τὰ πλεῖστα τῶν ἀναγλύφων τῆς Ἐκκλησίας Ἰωάννου τοῦ Θεολόγου, τὰ ὁποῖα εἶχε διαφυλάξει καὶ ταξινομήσει δ Σωτηρίου. Εὐτυχῶς κατώρθωσα, βοηθούμενος ὑπὸ τοῦ ΑΖΙΖ βέη καὶ τῶν ἐπιτοπίων ἀρχῶν, νὰ ἀνεύρω τὰ πλεῖστα τῶν ἐξαφανισθέντων, ἐντετειχισμένα εἰς τὰ παρὰ τὸ Τζαμίον χαλαρῶς κατὰ τὴν ἀνατολικὴν συνήθειαν κτισθέντα οἰκοδομήματα. Τούτων τοὺς τοίχους κατερρίψαμεν, τοὺς περικλείοντας τὰ ἀρχαῖα ταῦτα, καὶ ἠδυνήθημεν ἔπειτα πολλὰ φορτώματα άμαξῶν ἐκ τῶν εδρημάτων τούτων τῆς έλληνικῆς ἀνασκαφῆς νὰ μεταφέρωμεν καὶ προσωρινῶς φυλάξωμεν εἰς ἀποθήκην τῆς αὐστριακῆς οἰκίας, μεταξύ δὲ τῶν εύρημάτων τούτων καὶ κειμήλιον μοναδικῆς άξίας, τὴν ἐπιγραφὴν τοῦ νάρθηκος τῆς Ἐκκλησίας Ἰωάννου τοῦ Θεολόγου».

MAΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΙΣ.—Sur un cas de l'égalité et de l'inégalité des puissances des ensembles*. Note de M. Spyridion Sarantopoulos. ἀνεκοινώθη ὑπὸ κ. Γ. Ρεμούνδου.

1. M. BOREL dans un livre² de la réputée collection, qu'il dirige, écrit: «Étant donnés deux ensembles A et B, nous désignerons par A₁ une partie

¹ Σημείωσις Ι. Καλιτσουνάκη.

^{*} Σ. ΣΑΡΑΝΤΟΠΟΥΛΟΥ. — Περὶ μιᾶς περιπτώσεως τῆς ἰσότητος καὶ τῆς ἀνισότητος τῶν δυνάμεων τῶν συνόλων.

⁹ Leçons sur la Théorie des fonctions, 1914, p. 102-103.

aliquote quelconque de A, c'est-à-dire un ensemble comprenant uniquement des éléments de A, mais ne les comprenant pas tous; de même B₁ désignera une partie aliquote quelconque de B. Cela étant, si l'on compare A et B, quatre cas sont logiquement possibles et s'excluent réciproquement:

- 1° Il existe un A_i ayant même puissance que B_i et il n'existe pas de B_i ayant même puissance que A_i .
- $2^{\rm o}$ Il n'existe pas de $A_{\rm I}$ ayant même puissance que B et il existe un $B_{\rm I}$ ayant même puissance que A.
- 3° Il existe un A_1 ayant même puissance que B et aussi un B_1 ayant même puissance que A.
- 4° Il n'existe ni un A_1 ayant même puissance que B, ni un B_1 ayant même puissance que A_2 .
- « ... il est clair que ces deux premiers cas, non seulement sont logiquement possibles, mais sont réellement possibles; ... La question qui se pose maintenant est la suivante:

Lorsqu'on est dans l'un de deux dernier cas, peut-on affirmer que les deux ensembles A et B ont même puissance?

Nous allons démontrer qu'il en est ainsi dans le troisième cas²; mais dans le quatrième cas, nous ne savons rien. C'est une question qu'il serait très important de résoudre; car,...».

2. C'est sur ce quatrième cas que je m'occupe ci-dessous et je donne une réponse complète sur ce sujet si intéressant.

Mais quand dit-on que deux ensembles ont même puissance? D'après M. G. CANTOR qui a introduit la notion de la puissance deux ensembles sont dits avoir même puissance lorsqu'on peut établir entre leurs éléments une correspondance telle, qu'à tout élément de chacun d'eux corresponde un élément et un seul de l'autre.

Il est clair qu'on peut comprendre une correspondance partielle, c'està-dire on peut établir une correspondance univoque et réciproque entre les éléments d'une partie de l'ensemble A et d'une partie de l'ensemble B. (Bien entendu on suppose que ni A, ni B soit nul). Il suffit, p. ex., de faire correspondre une élément de l'ensemble A à un élément de l'ensemble B. Par

² La démonstration de ce cas a été indiqué à M. Borel par M. G. Cantor au Congrès de Zurich (août 1897), mais elle est due à M. Felix Berstein; elle a été donnée pour la première fois dans le séminaire de M. Cantor, à Halle.

suite on peut accepter que, étant donnés deux ensembles A et B, il existe un A_1 et un B_1 ayant même puissance.

Si A₁ contient un nombre fini d'éléments, B₁ doit aussi contenir le même nombre fini d'éléments.

Nous dirons qu'un ensemble A correspond partiellement à un autre ensemble B (ou A a une correspondance partielle dans B) quand A a même puissance avec une partie aliquote de B. Nons désignerons cette relation en écrivant A≪B ou B≫A. Le symbole donc ≪ ne veut pas désigner, que les éléments de A sont aussi des éléments de B, mais tout simplement qu'il existe une correspondance partielle.

3. Cela posé nous remarquons que, étant donnés deux ensembles A et B tels qu'il n'existe ni un A₁ ayant même puissance que B, ni un B₁ ayant même puissance que A (hypothèse principale), quatre cas sont logiquement possibles:

1er cas.— Dans ce cas on suppose que A correspond partiellement à B₁. Cela signifie que A a la même puissance avec une partie B₂ aliquote de B₁, et par suite de B, chose qui ne peut avoir lieu d'après l'hypothèse principale. Par conséquent A et B n'existent pas.

Si l'on fait une légère modification sur l'hypothèse 1° en désignant par A_1 et B_1 des parties des ensembles A et B mais non nécessairement aliquotes, c'est-à-dire qui puissent coincider avec A et B, on peut avoir un résultat positif. En effet, sous cette condition si l'on veut ne pas être en contradiction avec l'hypothèse principale on peut accepter que B_2 coincide avec B. Alors A aura même puissance que B. D'autre part si A n'est pas composé d'un nombre fini d'éléments, on peut faire soustraction d'un ensemble A_2 dénombrable et par suite trouver un autre ensemble A_3 qui aura, comme il est connu, même puissance que A. Mais alors il existerait une partie aliquote A_3 de A ayant même puissance que B, ce qui est en contradiction avec l'hypothèse principale. Donc A et B sont composés d'un même nombre fini d'éléments et B_1 doit coincider avec B.

Remarque. Dans ce cas on remarque que l'hypothèse $A_1 \ll B$ a été faite

sans qu'on en ait besoin. En effet dans le cas résolu par la négative, cela va sans dire. Dans l'autre cas l'hypothèse A₁≪B se remplit par elle-même.

 $2^{\grave{e}me}$ cas.—Ce cas ne diffère pas essentiellement du précédent parce que l'on suppose de nouveau $A \ll B_1$; par conséquent ou bien A et B n'existent pas, ou bien ils sont composés d'un même nombre fini d'éléments. Dans ce dernier cas la condition $A_1 \gg B$ ne peut avoir lieu que si A_1 coincide avec A. Autrement A et B n'existent pas.

3ème cas.—Ce cas ne diffère de 1er que par l'échange de A et de B. Donc la même conclusion.

 $A^{\triangleright me}$ cas. On remarque tout d'abord que ce cas a lieu quand A et B sont composés d'un même nombre fini d'éléments; on peut avoir en même temps $A\gg B_1$ et $A_1\ll B$, A_1 et B_1 désignant des parties aliquotes de A et de B; l'hypothèse principale est aussi remplie. Ce cas n'a pas lieu quand A et B sont composés d'un nombre fini d'éléments, mais non le même.

Mettons ce cas partiel à part; supposons c'est-à-dire que A et B se composent d'une infinité d'élements.

Dans ces conditions on remarque que toute partie aliquote A_2 de A contenant A_1 a une correspondance partielle dans B, car autrement ou bien A_2 a une correspondance complète, c'est-à-dire a même puissance que B, ou bien B a une correspondance partielle dans A_2 . Mais si l'on accepte que A_2 correspond complètement à B on est en contradiction avec l'hypothèse principale d'après laquelle il n'existe ni une partie aliquote de A ayant même puissance que B. Si l'on accepte que B correspond partiellement dans A_2 , on est devant le $3^{\rm me}$ cas et par suite ou bien A et B n'existent pas, ou bien ils sont composés d'un même nombre fini d'éléments. C'est le cas que nous avons mis à part. Donc A_2 contenant A_1 correspond partiellement à B. (Si A_2 est une partie de A_1 , il aura une correspondance dans B a fortiori).

Cela posé, on peut choisir l'ensemble A_2 infini, tel que l'ensemble $A-A_2$ soit dénombrable. Soit B_2 la partie aliquote de B qui a même puissance que A_2 . Désignons par A_3 et B_3 les ensembles $A-A_2$ et $B-B_2$. Nous aurons

(1)
$$A = A_2 + A_3 \text{ et } B = B_2 + B_3$$

L'ensemble A₃ est à cause de l'hypothèse faite, dénombrable. Je dis que B₃ doit être aussi dénombrable. Si l'on suppose le contraire, on peut partager¹

¹ On ne suppose pas que B₃ soit un ensemble fini, car alors B₃ aurait même puissance qu'une partie aliquote de A₃ et par suite, à cause de (1), B aurait même puissance qu'une partie aliquote de A; mais cela est contradictoire à l'hypothèse principale.

 B_3 en deux ensembles B_4 et B_5 donc l'un, p. ex. B_4 , soit dénombrable Mais alors puisque A_2 et A_3 ont même puissance que B_2 et B_4 et comme on a

$$A = A_2 + A_3$$
 et $B = B_2 + B_4 + B_5$

A aura même puisssance qu'une partie aliquote B_2+B_4 de B, ce qui est en contradiction avec l'hypothèse principale. Donc B_3 est dénombrable. Il en résulte que A et B ont même puissance.

D'autre part puisque A_3 est dénombrable, A et A_2 ont même puissance et par suite A_2 a même puissance que B. Mais cela est aussi en contradiction avec l'hypothèse principale.

On est arrivé à cette contradiction en supposant que les ensembles A et B sont composés d'une infinité d'eléments.

On en conclut que tels ensembles n'existent pas.

On voit donc que sous l'hypothèse principale deux ensembles A et B ne peuvent exister qu' à la condition d'être composés d'un même nombre fini d'éléments.

ΠΕΡΙΛΗΨΙΣ

Ό καθηγητής τῶν Παρισίων κ. Borel ἔν τινι τῶν βιβλίων του ἐπὶ τῆς θεωρίας τῶν συναρτήσεων ἐξετάζει τὴν ἀνισότητα ἢ ἰσότητα τῶν δυνάμεων τῶν συνόλων. Αἱ περιπτώσεις καθ' ἄς δύο σύνολα εἶναι τῆς αὐτῆς ἢ ἀνίσου δυνάμεως δὲν ἔχουσιν εὑρεθἢ πᾶσαι. Ὁ κ. Borel ἀναφέρει τέσσαρας δυνατάς περιπτώσεις δηλαδὴ ἐκείνας αἴτινες λογικῶς δύνανται νὰ παρουσιασθῶσιν' ἐπὶ τῶν δύο πρώτων δὲν παρουσιάζεται δυσχέρεια, τῆς τρίτης ἡ λύσις ἀνεκοινώθη εἰς τὸν κ. Borel ἀπὸ τὸν γερμανὸν μαθηματικὸν κ. Cantor καὶ ὀφείλεται εἰς τὸν κ. Félix Berstein.

Τὴν τετάρτην περίπτωσιν ἐξετάζει ὁ κ. ΣΑΡΑΝΤΟΠΟΥΛΟΣ, διότι ἡ ἔρευνα αὐτῆς δὲν εἶχεν ἐξαντληθῆ καὶ παρέχει λύσιν τοῦ σχετικοῦ ζητήματος ἐκφραζομένην διὰ τοῦ έξῆς θεωρήματος:

«'Εὰν ὑπάρχουσι δύο σύνολα A καὶ B τοιαῦτα ὥστε οὐδὲν ἀληθὲς μέρος τοῦ A » νὰ ἔχη τὴν αὐτὴν δύναμιν ἢν καὶ τὸ B καὶ ἀντιστρόφως, οὐδὲν ἀληθὲς μέρος τοῦ B » νὰ ἔχη τὴν αὐτὴν δύναμιν ἢν καὶ τὸ A, τὰ δύο ταῦτα σύνολα θ ' ἀποτελῶνται » ἐκ πεπερασμένου καὶ τοῦ αὐτοῦ ἀριθμοῦ στοιχείων».

 $^{^1}$ B_4 aurait donc, comme il est connu, même puissance que $A_3\,$ et $B_5\,$ serait composé d'une infinité d'éléments.