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EOHPMOSMENA MAOHMATIKA.— Remarks on stability concepts of
solutions of dynamical systems, by Demetrios G. Magiros*.
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INTRODUCTION

The study of the stability situation of physical and social pheno-
mena, which are modeled as dynamical systems, is based on a variety of
stability concepts, and this variety makes the study complicated and the
stability results questionable in many cases.

In this paper, we will give a set of remarks on stability concepts,
which may permit a better understanding of the difficulties of current
stability problems.

The stability concepts may come from sources of different nature.

Examining the stability of a motion in its orbit and of the orbit of
a motion, one can distinguish two basic stability concepts, which contain
many other specialized concepts as special cases.

The manner in which a state of a system approaches another state,
or deviates from it, the way the perturbations act on a system, or the
way one measures their norm and their effect on the system, the type of
the mathematical model of the system, etc., are sources for stability
concepts of different nature.

All these different stability concepts can be «unified» into the same
«stability relationships», and this «unification» of the stability concepts
brings a natural simplicity in the understanding of subjects concerning
stability, and gives rise to new results.

1. REMARKS ON PERTURBATIONS

It is necessary to make remarks concerning the purturbations of
the systems and their solutions. A variety of stability concepts comes
from the manner the purturbations act on the system, the way the norm
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of perturbations is taken, and the way their effect on the system is
measured.

The perturbations, which can be considered as minor disturbing
forces, may act on a system either «momentarily», when only the
initial conditions are perturbed, or «permanently» when the
system itself is disturbed and the perturbations, during their action,
must enter the equations of the system explicitly. The «sudden» and
«persistent>» perturbations characterize two different classes of
stability concepts.

The «nor m» of the perturbations can be taken in different ways,
and each of them characterizes a special stability concept under persistent
perturbations. The perturbations may depend on deviating arguments,
when the stability concepts will be related to the deviations of the
arguments.

The «effect» of the perturbations is a change of certain quan-
tities pertaining to the original motion and/or to its orbit, and this
effect can be visualized by the change of the orbit S of the unperturbed
motion xi(t) into the orbit S of the perturbed motion % (t).

Given a state of a dynamical system, that is a point P on S, if, as
a result of the perturbations, S is the new orbit, and the point P on S
corresponds to the point P of S, the distance o = PP can be taken as
the magnitude of the effect of the perturbations at P, Fig. 1.

To a given point P of S, one may make to correspond different
points P on S, and each correspondence characterizes a specific stabi-
lity concept of the motion. Any such correspondence presuposes an
assumption, and each assumption comes from a physical reason.

One can distinguish two, the most physical, correspondences be-
tween P and §, when two important stability concepts result, namely,
the stability concept in the sence of Liapunov and that in the sense of
Poincaré, by using the stability distances o = Pf’, called Liapunov and
Poincaré distances. In Fig. 2 «L,iapunov distances» are shown
P and P correspond to each other at the «same time». In Rig. 3;
P and P correspond in such a way that :

— = ) n 1/2
0 =0(P,S) = PP = min zn—:i—xilz}
=1

and ¢ = PP is «Poincaré distancens.
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If the model of the system is expressed by differential equations
with deviating arguments, e.g. by differential equations with retarded
arguments of retardation t;(t), the «initial functions» i(t)
of S and ¢i(t) of S define the «initial distance» gy= PyPy =
= |@;i (t) — @; (t)| taken over the interval to— T <Lt <(ty, Fig. 2.

Fig. 1, Fig. 2, Fig. 3.

The above includes the ordinary differential equations, where 1; =0,
Qo1 = 0o = PoPp at t =t,, Fig. 2.

In case the retardations vi(t) are perturbed, one has a new stability
concept characterized by the distance: o, = |7i(t) — 7 (t)|, where ©; the
perturbed regardations (1).

2. REMARKS ON THE RELATIONSHIPS OF THE STABILITY CONCEPTS

Following considerations on «physical stability» and
using the precending remarks and notations, any stability concept can be
described quantitatively by the «stability conditions»:
(a): 0n <8, (b): o<k, (C):tl_i_‘ﬁlw":()' (d): Ipill <, (e): o< (1)
which, then, «unify» all the stability concepts. ¢, d;, d,, d; are posi-
tive constants, p; the perturbations, and, in general, 8, and 98, depend
on t, and s.

By a suitable combination of these relationships, by an appropriate
interpretation of the distances involved, and by some restrictions of some
quantities of these relationships, one can express any stability concept.
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The following remarks may help to clarify the above statements.

The inequality 1(a) is valid for t in the initial inverval
Eto: tp—tu<<t<ty, while the inequalities 1(b), (d), (¢) for t in t>t,,
to > 0.

In case of «ksudden perturbations», the inequality 1(d)
is meaningless, and in this case 1(a), (b) express the «stability»,
while 1(a), (b),(c) the «asymptotic stability».

In case of «<permanent perturbations», when 1(d)
is meaningful, the selection of the kind of the norm of perturbations
specifies the stability concept, so, one may have «total stabi-
lity» or «integral stability», or «stability in the
m ean», under suitable norm of perturbations.

By restricting d; and 8, to depend only on ¢ and not on t,, we have
the «uniform stabilities», as this happens in periodic
systems, or in autonomous systems.

Restriction on t, to have a minimum, mint,= a, implies «even-
tual stabilities».

If in (1) the distances @ are interpreted as Liapunov or Poincaré
distances, we have stabilities in the sence of Liapunov or Poincaré.

In case of equilibrium points of a system, when the orbit S shrinks
to a point, the distinction between stabilities in the sence of Liapunov
and Poincaré is meaningless.

The inequality 1(e) has a meaning in case of perturbed retardations.

In case of periodic motions, when S is a closed curve, the stabi-
lity concept in Liapunov sense is a narrow concept compared to the
stability concept in Poincaré sence. The «isochromnism», thatis
the «constancy of the frequency», characterizes the Lia-
punov stability, while this notion does not enter in the Poincaré stabi-
lity. Further we may have that :

. A motion stable in Liapunov sense is also stable in Poincaré
sense ;

. A motion unstable in Poincaré sense is also unstable in Lia-
punov sense ;

. A motion unstable in Liapunov sense may be stable or unstable

in Poincaré sense, and
ITAA 1974
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. A motion stable in Poincaré sense may be stable or unstable
in Liapunov sense.

The stability is a property of the solution different from its boun-
dedness property, although in some cases there may exist regions
where these properties are equivalent and one implies the other. The
boundedness of the solution is characterized by the boundedness of
OP = g; = |x;|, where O the origin of the coordinate system and P point
of the orbit; but the stability is characterized by the boundedness of
0 =|% —x;|, and it is possible for the orbits x; and %; to be unbounded
as t —> «, when the stability distance ¢ gets the form (@ — ®), when
o will be either infinite, or constant, or zero, and the unbounded solu-
tion x; will be either unstable or stable.

All the stability concepts included in the relationships (1) are of
mathematical type, and the results, theorems or criteria, based on them,
may not interpret the reality. Also, one and the same phenomenon may
be, mathematically speaking, stable or unstable depending on the stabi-
lity concept employed in the discussion of the stability of the phenome-
non when the selection of the stability concept, appropriate for the
phenomenon, arises.

The mathematical stability concepts and the stability criteria based
on them, represent a possible functionig of the physical system, and in
order all these to have a practical usefulness, and to agree with «pra-
ctical stability», which must be the ultimate purpuse of the
stability investigations, appropriate modifications, changes, supplements
of the mathematical stability concepts must accompany the investigations.

The notion of «practical stability» is a subject not yet completely
studied, but in many cases is characterized by the knowledge of : (2)

. The size of deviation of the state acceptable for a satisfactory
operation of the system ;

. The size of permitted initial conditions that can be con-
trolled ;

. The size of permitted perturbations ;
. The finite time T for the stability investigation.

The nolinearities of the system play a decisive role for practical stability.
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3. AN EXAMPLE

We terminate the discussion on stability remarks by using as an
example the investigation of the «stability of some preces-
sional phenomena», by which some of the above statements
may be clarified.

The rotational motion of a rigid body around its axis of symmetry
is governed by the Euler’s (ordinary differential) equations, of which
the stability of the solutions has been examined under sudden perturba-
tions, then by employing the first three stability relationships (1).

If L = (Ly, Ly, Lg) is the external torque vector acting on the
body, o = (wy, Wy, ®3) the angular velocity vector, which characterizes
the precession of the body, wy = (wg;, wgy, ) the initial angular velo-
city vector, and I;, Iy=1I;=1 the moments of inertia, the precessional
motion of the body in the following two cases are given by:

— )
(a) ®; = wyp=constant, w,= A cosQ;, wz= AsinQ,;, Q;= (I II) W10,
(il’l case, Ll == L2 = La = 0, Il) I, A= ((0(2)2+0)33)1/2 Constants)
(2)
L ; L2k,
(b) 0)1 —— -‘I—i—t, Wy = ACOSQ2, (1)3=ASan2, Q2=Ql+( 1211)I 1t2

(in case: I, = comnstant, L,= L;= 0)

The «regular precession» 2(a) is bounded, while the
«helicoid precession» 2(b) is unbounded as t—>ow. The
results for their stability situation are the following :

(i) The regular precession 2(a) is «stable» but <«not
asymptotically stable» in Poincaré sense (orbi-
tally). In Liapunov sense it is «stable» but «not
asymptotically stable», if wy is not affected by
the perturbation; and it is «unstable», if wy is affected
by the perturbations.

(i1) The helicoid precession 2(b) is «asymptotically
stable» in Poincaré sense, but it is «unstable» in
Liapunov sense.
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(iii) The stability situation of the above example in Poincaré sense
is preferred, because in this case it is proved that the requi-
rements for «practical stability» are satisfied.

We remark that the stability of a system, by using any of the pre-
vious concepts, depends, in general, on the selection of the major varia-
bles of the system, and on the transformation of the variables. This will
be subject of a next paper.

HEPIAHYIX

1. Ei¢c mv nagovoav &oyasiav didoviar mapatngrocelg ni TV dvuilipenv
meol evoradelag elc Quowd nal xowvovine @aivopeva, T 6mola padnuarizomor-
odvrar ¢ duvamxd meopMinata. H movuria tdv dvuliypeov ebotadeiog xduvel
10 moofMuata edotadelog modd memheypéva ol v dmotedéopata Tig Eoevvig
Bdoer adtdv Oy dexta Bviote.

2. *Avagépopev peounag mnydg, mo tag 6motag duvdueda v Exwpev mwoi-
whov dragdgov ploswg avuiMppewv mepl evotadeiag :

—0 tobmog e tov 6moiov plo xatrdotacig Evog cusTiuatog mAnoldler plav
&AMy xatdotoaov 1) dmopaxouveral Gmwo abTHY.

—°0 todémog ue tov 6moiov mooxololvrar xai doolv ai datagayal Evog
ovoTHRATOG, O TEOMOG ME TOV O6mOTOV UETQOVUEV TMV EVIGGLY T@V dlataQaydy,
xadg #al TV TdOV GroteAecpudrov Tov Tl TOU GUGTHUATOG.

—“H Sopt} 1oV padnuanzod pwovréhov tol cvothuatog *Aw.

3. “Ohat ai avudiypec edotadeiag, dv zal dagpdoov @icews, dvvavral
v’ Gvadodv i Tog adtag padnuanzag «oyéoeic evotadeiagr, al 6motar didovv piav
«Evomoinoy» v Gvuilippeov sdotadeiag, adth O % Evomoinoig vmofondel v
xatovénoy tdY avrictolyov meofAnudrwy, dSvatar 8¢ va 6dnynioy eig véa cvnme-
odouara. Mé xardinhov cvvdvacudv tdv «oyéocwy edotadeiog», xai xardiiniov
founvelay ) meooowopdY TMY TOCOTHTOVY THV oYoEmy adTOV, divatar va meoriypy
6motadfmore aviiAnig evotadeiog.

4. Al dvulippeig edotadelac, mov mepihelovian elg Tag «oyfoeig ebotadeiag
vodeinviovy Evdeyouévmyv Aettoveylov ToU ovotiipatog, ¢ 08 cvumeQdoMora,
Yewofuata 3 xoutjow, mob Bacifovrar &’ abtdyv, dvdéyetan va ui) Eoumvevouvy
TV TOAYUaTIOTNTA Xatd txavomomTxdv Teémov, 1) évdéyerar v Eyouev dud to
adtd gawdpevov drapdoovs xatastdosig edotadelag, 6ndte yevvatan to medfAnua

tiic &xhoyiic g xavariilov xatactdoewg did TO QULVOUEVOV.
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5. Al podnuatnral dvuliypeig wepl svoradetog, xadwg xat o Pdoel adTdv
ovumeodopata, di vo founvedouvy THY TEAYUATIXOTNTA ROTG (XOVOTOINTIXOV TQO-
oV, WEEMEL VO oupgwvoly UE ta moplopata Tig «moaxtixils svotadelngr, mooOg
tolto 8¢ yoetdfovraw xavdhAnlov toomomoinoty xai cvpmiioworv. ‘H moaxtinm

S ’ A 3 ’ ~ (<4 A ’
evotadeta dev Eyet mhiowg omovdacdiy, Suwg xlola yagaxtmolotind TN dvvaTol
Vo glval 1) yv@oolg :
— tob pueyédovg Tijg dmoxhicemg dextdv nataotdoemv Tol CLOTHUATOS TEOG
avomomtxny Aettoveylav ol cvoTiuatog,
~ 7 ~ ) ~ -~ c c -~ ’ \ > -~

— 100 peyédovg @V Goyx®dv ouvdnudv, ai omotar dvvavral va Ereyydovv,

— 1ol ueyédovg TV Emitoemouivmy dratagaydv,

— TOD o0vVov, OV UEASTMOUEY TNV evoTdUsiay.

— Al un yoouwrdrnreg 1o ovoriuarog mailovv dmogaciotiroy gdrov did

TV moaxtiANV evotddeiav, xal d&v dVvavral va dueindoiv.
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X

‘O *Axodnuainog ». ‘Iwdvvng EavBhaxng, magovoidlov v dvotéom
avaxolvoowy, eime 10 €N :

Eic v 8oyaciay tavtyyv tod x. Mayelgov, thv 6molav &xm v Tty ve
nogovoldow eig Ty “Axadnuiav, xtideviar moopévar EvOlagpéQovcal maQaTtno)-
oetc &ml TV aviilnpewv mepl evotadelag €l QUOLKG %Ol XOWVOVIXG QALVOUEVA,

oY Exgodlovral uadnuatindg hg duvapine meofinuata.
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AT avuilipeg mepl evotadelog mpoéoxovTal GO mMYdg duagpogov @uoEws.
‘H uekéty tic oradeodrnrog mdc mvioswe &mi tig TeOXLds NG 1 N mekérm tig
TEOYLAC MGG ®ViioEmS pag mapéyer dvo diaxexowuévag Bacwwag Gvuilippeg meol
evotadelag, al Omolar mepéyovv mAfidog dAAwv eldievpévoy avrilippemv og
elduag mequrtaoeis. ‘O tedmog ue TOV 6molov 1) ®aTdoTaolg £VOS GUGTHATOG TAN-
oudlel meog wiav dAAny, 1 moaoexxhiver €& adriig, 6 TodmMOg WeTENoEWS TRl EVid-
oemg TV dratagay®dv Evog ovetiuartog, 1 doun Tol padnuatizod poviéhov €vog
ovotiuatog %ol dAlo elvar mnyal Gvuiliypeov sbotadeiag diagpigov picews. “H
mowthia avtn t@v avuilipewv edoradeiag xduvel ta mpofAquata Alav mohvmioxa
®al ta amotehéopata TV E0evvdv Pdoel avtdv Eviote d&v elval yevindg dmodextd.

“Olan ai GvuiMipeg mepl evotadelag, Av xal dtagpdoov @ioemg, dvvavta
va avaydolv, xata tov x. Mdysioov, €ig tag avtdg padnuatinag «oyéoslg evota-
Velog», al 6molar magéyovv uiav Evomoinow t@v diapdomy mepiotdoswy. ‘H &vo-
moinorg abty UmoPfondel elc v mhnoestéoav xatavémely T@OV AVTLGTOIYOV
mooPfAnudrwy.

Ta ovuneodonata, Yemoiuara ) xottiole, te otnotldueva el Tag nadnua-
TIRag 0YE0ELS AvTIMYewy svotadeiag, sival duvatov va ut founvevouvy xotd ixa-
VOTTOLNTLXOV TEOTOV THV moayuatindtnte, 6méte mooloTatal Gvdyxy TOOTOTOU]-
oEWV 1) CUUTANQMOOEWY TOU Uadnuatinol TEOTUROU, olUtwg Mote 1) madnuatixn
datinwoig thg avuilnpewg evoradeing vo mhnotdly, doov 10 dvvatov mEQLOGH-
tegov, mog TV Aeyouévny «Ilpaxtiuny Edotddetav», ftig dumg d&v Exet anoun
ainowg peletn .




