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ABSTRACT

Discrete, dissipative/nondissipative, non-gradient structural systems (due to follower
loading) described by nonlinear autonomous ordinary differential equations, are critically
discussed. Through a Taylor series of these equations, in their most general form, it is
found that the first variation coinciding with the Jacobian matrix is a non-symmetric
block-matrix consisting of four submatrices properly identified. Attention is focused on
perfect linear elastic or nonlinear elastic structural systems associated with trivial pre-
critical equilibrium paths. Using a general approach with qualitative and quantitative
criteria the stability of the precritical, critical and postcritical states is thoroughly exa-
mined. This analysis is applied to Ziegler’'s model for which a lot of numerical results
are available. New dynamic bifurcations (independent of the structure of the Jacobian
matrix) as well as local bifurcations associated with one zero eigenvalue, a double zero
eigenvalue and imaginary conjugate eigenvalues (Hopf bifurcation) in a certain region of
adjacent equilibria in the neighborhood of a double branching point, are revealed. In this
region it is also found that dynamic bifurcations (associated with limit cycles) may occur
prior to static bifurcation. New findings for the stability of critical states based on the
present nonlinear dynamic analysis contradict previous widely accepted results of the
classical (linear) analysis. Local or global bifurcations for both non-gradient and gradient
systems even when there is no damping may be associated with chaoslike phenomena.
Such phenomena sometimes are quite persistent, a fact which does not allow easy pre-
diction of the long-term response of the system.
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1. Introduction

The nonlinear analysis of engineering structures was long ago recognized as being
of paramount importance for establishing accurately and safely their load-carrying
capacity. Many instability phenomena of vital concern were brought into light thanks
to the postbuckling analysis founded by the Dutch researcher W.T. Koiter fortyfive
years ago. This analysis was applied to conservative and later on to non-gradient
(nonconservative due to follower loads) structures. However, the postbuckling analy-
sis regarding the latter systems failed in certain cases to predict the exact divergence
(buckling) critical load which can be established only by using a nonlinear dynamic
analysis [Kounadis (1989)4, (1990)2, (1991)2, Sotiropoulos and Kounadis (1990)].

Dynamic instabilities belong to a much broader class of real-world problems which,
being in general nonlinear, fall outside the domain of the classical (linear) dynamic
analysis and hence must be tackled in the first instance on a computer. Today we are
indeed witnessing a spectacular blossoming of nonlinear dynamic, made possible on
the one hand by the wide availability of powerful computers and on the other hand
by the qualitative topological approach based on the theoretical Poincaré’s strides.
These ideas arée revolutionizing the theory of dynamical systems in many branches of
applied sciences and engineering (e.x. in Physics, Meteorology, Astronomy, Chemis-
try, Electromagnetics, Biology, Ecology, Economy, etc), while they are having a lesser
impact on Mechanics. The study of the interaction between geometrical nonlinearities
and damping revealed new phenomena such as: phenomena due to strange attractors
or to simple or multiple attractors, chaoslike and metastability phenomena, pheno-
mena due to sensitivity to initial conditions or to damping. At this point a reasonable
question which arises is whether or not such chaoticlike or phenomena of similar
nature appear also when a nonlinear dynamic analysis is employed.

The answer to this question was given as a byproduct of a systematic and intensive
four year research by the author and his associates who established efficient tech-
niques and qualitative-quantitative criteria for the nonlinear dynamic analysis of
structures. In a series of 32 publications (see refs 1-32) among which there are 22
papers in international journals and 10 presentations in international symposia (as
invited key-lectures) brought into light for the first time impressive chaoticlike or
other interesting phenomena associated with the nonlinear dynamic analysis of struc-
tures. New findings contradict widely accepted early results of eminent researchers
(such as G. Herrmann, Nemat-Nasser, H. Leipholz, R. Plaut et al) which were derived
on the basis of classical (linear) dynamic analysis. Today we are able to explain and
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analyse qualitatively and quantitatively various phenomena of the dynamic response of
structures [Thompson and Stewart (1986), Jackson (1989)] such as the collapse due
to flutter (unstable limit cycles) of the Tacoma 854 m span suspension bridge in 1940.

Despite the availability of high speed computer and efficient computational
schemes, quite often a large time solution of nonlinear equations of motion may be
unreliable due to the accumulation of error. Thus, one has to resort to efficient
approximate analytic techniques [Kounadis (1989)2, Kounadis and Mallis (1988),
Kounadis (1992)1] or to establish qualitative and quantitative criteria [Kounadis
(1988)12, Raftoyannis and Kounadis (1988), Kounadis, Raftoyiannis and Mallis
(1989)12, Kounadis, Mahrenholtz and Bogacz (1990), Kounadis and Raftoyiannis
(1990), Kounadis (1991);, Kounadis, Mallis and Raftoyiannis (1991), Kounadis
(1992) s, Mathrenholtz and Kounadis (1993)].

In addition to the aforementioned qualitative topological approach for reducing the
dimension and nonlinearities of dynamical systems, one should mention the old
Lyapunov-Schmidt technique and mainly the local techniques of the central manifold
[Carr (1981)], of the normal forms [Perko (1991)] and splitting lemma [Gilmore
(1981)].

In refs [2, 3, 5, 6, 12, 13, 18, 21, 22, 30, 32] the author and his associates give a
qualitative explanation of the mechanism of dynamic buckling for multi-degree-of-
freedom systems under conservative loading. These studies extend the well-known
research of Budiansky (1967) and Hutchinson dealing with the dynamic buckling of
one-degree-of-freedom systems to multi-degree-of-freedom systems. The machanism of
dynamic buckling and dynamic instability of nonconservative of divergence and flut-
ter type systems are thoroughly examined in refs [7, 9-11, 14-17, 19, 23-25, 27, 29,
31] in which new phenomena reported for the first time in the literature or contra-
dicting previous ones, are also assessed. Chaoticlike and metastability phenomena,
phenomena of sensitivity to damping and to initial conditions appear in both conser-
vative and nonconservative dissipative or nondissipative systems [7, 9, 10, 15-20,
22-25, 27, 29].

The present work, being an extension of previous studies by the author and his
associates, deals with the nonlinear dynamic buckling and instability of nonconserva-
tive bifurcational nonlinearly elastic dissipative or nondissipative structural systems
subjected to follower forces. Using a general theoretical analysis associated with qual-
itative and quantitative criteria a series of different types of bifurcations is properly
identified. Dynamic bifurcations occurri'hg prior to static (divergence) bifurcations,

chaoticlike and other phenomena are found in a small region (of abjacent equilibria)
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in the vicinity of the boundary which separates the region of existence from the region
of non-existence of adjacent equilibria. New findings for the stability of critical states
in this region as well as in the region of non adjacent equilibria, contradicting previous
widely accepted results, are revealed. Local and global bifurcations for both conserva-
tive or nonconservative dissipative or non-dissipative systems may be associated with
chaoslike phenomena. These phenomena may, quite often, be very persistent, a fact

which does not permit to predict easily the long-term response of the system.

2. Mathematical formulation

Consider a general n-degree-of-freedom dissipative discrete system under a partial
follower loading A of constant magnitude associated with the nonconservativeness
parameter 7. The nonlinear Ordinary Differential Equations (ODE) of Lagrange
governing its motion at any time t in terms of generalized displacement q; and gener-
alized velocities Gi (1= 1,...,n) are given by

%(3—1‘; —% %+3—2—Qi=o (i=1,..n) (1)
where the dois denote differentiation with respect to time t; K= (1/2) w;§iq; is the
positive definite function of the total kinetic energy of a natural system [Meirovitch
(1970)] with diagonal elements being functions of masses m; [i.e. o= oti(mj),
i=1,...,n] and non-diagonal elements being functions of both m; and q; [i.e. o=
= o (mj, qi) for i7j and i, j=1,....n]; U=U (qi) is the positive definite function of
the strain energy, being a nonlinear analytic function of qi; F=(1/2)c;qig; is the
non-negative definite (linear viscous) dissipative function of Rayleigh with coefficients
which might be functions of g [i.e. cij=cj(q) with i, j=1,....n]; Qi=Qi (gi;n;2) de-
signate generalized, in general, nonpotential forces being nonlinear analytic functions
of gi and 7, and linear functions of A. Clearly, the tensor summation convention of
Einstein is employed herein with summation ranging from one to n. Note that for a
certain value of the nonconservativeness parameter v the forces Q; become potential
(conservative) forces. In view of these assumptions the system under consideration is
classified as a dissipative pseudo-conservative system [Huseyin (1978)].

The loading A and parameter v are the main control parameters for static and
dynamic bifurcations as well as for the stability of equilibria and limit cycles. As
dynamic bifurcation is defined a sudden qualitative change of the system response
occurring at a certain value of a smoothly varying parameter. From a point of view of
topology dynamic bifurcations correspond to those values of a control parameter for

which the response of the system becomes structurally unstable [Andronov and Pon-
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tryagin (1937)]; namely the phase portrait is changed to a topologically nonequival-
ent portrait by a smooth change of the control parameter. In the following it is
assumed that the bifurcation points (either static or dynamic) lie on a trivial funda-
mental (prebuckling) equilibrium path.

The analysis deals with dissipative systems, since the precise modeling of a real
structural system should include damping in addition to geometrical nonlinearities.
The presence of internal friction, in the most general sense of the term, has as a
consequence the existence of an attractor; that is the existence of an asymptotic limit
(as t =) of the solutions such that the initial conditions-the point of departure-have
no direct influence. In mechanics when friction entails continuous decrease of the
energy, the corresponding systems are called for this reason dissipative. Many phen-
omena in nonlinear dynamics are the corollary of the interaction between geometrical
nonlinearities and damping.

From the above expression of the total kinetic energy K one can readily obtain

d JK Sy Ot o
dt (aq ) =i @+ o q;  (with &= N qx) 2
Writing &;; for i=1,...,n we get a column matrix whose i™ element is
(o dap o o] [ ]
dq1 dq Iqu s
dair douz Jin .
o(lJ ql Iqls sqn] aq2 aq2 0 aq2 (%)
doir datiz 0 ... 9%n -
4 Jqn  9qn Ign 4 .qn 4

where, as is known a priori, daii/dqx =0 for i,k=1,...,n.

Similarly, it follows that

) Gz daas L 9%n 4y s
aqi aqi aqi o
SREIR . ... " Jozn
9K _1 dgi  dgi dgi .
aq [ql’ <o P eviinsines vibisssopern %)
Symmetric " . don-1n
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By means of relations (3) and (4) one can determine the column with i™ element

e MO T
otij(]i_"éq—i: 'Siq ®)

where S; is a square non-symmetric matrix, while q" = (q1,-,qn) " is the transpose of
the vector q.

Given that dF/dqi=c;jq; eqs (1) by means of relations (2) through (5) become

e s 4 U :
%ijj +qTSiq+Cijqj+a_qi'—Qi:0 (i=1,...;n) (6)
Since [oj) is a positive definite matrix, one can always get
of [ TG ¢ : av
q q.ng qu aq
vl pess, bod=fiyfe e, ferdfaltily ¢ @)
g TG £ AY
'qﬂ =Y .an Er

where [Bi] = [o] ", [€5] = [Bi] [cs] and 8V/dqi=0U/dqi— Qi; hence V=V (qish;7).
The set of n 2™ order 0.D.E. of Lagrange [egs (7)] can be replaced by a set of 2n

1% order equations as follows: Setting
Y1=q1, Y2= (2, Yo =qn and yna =q1, yniz=q2,.., Yon=Gn (8)

eqs(7) can be written in the form

¥i= Yi(y1,....y2n3A57), i=1,...,.2n 9)
where

Y1=yn+1, Y2=yn+2, ..., Yn=Y2n
and

Yo = — By Sif — E1iynsi — By g—x

Yniz=—PBa§ Si¥ — ziyns — B % (10)

--------------------------------

- e o Al
Yoo = Bniy Siy — Cuynsi — Bnj 3o
dy;
with y designating the vector with components yn+1, yns2,...,y2n.

Egs (9) can be written in matrix-vector form as follows

=X {pam (11)
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where y= (yl,...,yz,,)T is the state vector, being a continuous function of t and A for
fixed 7; the nonlinear vector-function Y= (Y1,...,Y2n) " is assumed to satisfy the Lip-
schitz conditions, at least in the domain of interest, for all t and A. This implies that
yi(t;A) belongs to the class of functions C [ie. y(t;)\)ecz].

For the above bifurcational system eq. (11) is satisfied by the zero solutions, y =0,

for all values of A and v, i.e.
Y (0;230) =0 (12)

For certain ranges of values of the nonconservativeness parameter 7 the system
exhibits adjacent equilibria [determined via eq. (12)]. Outside these regions of diver-
gence instability the system displays a limit cycle response which cannot be estab-
lished unless a nonlinear dynamic analysis is employed. In the first case the critical
state is associated with a branching point bifurcating into adjacent equilibria (post-
buckling equilibrium path), while in the second case the critical state is associated
with a branching point bifurcating into limit cycles. In both cases the system displays

in addition to the zero solution another (different from zero) solution.

3. Local analysis

The response of the structural system, in several cases, can be established by using
a local (linear) dynamic analysis (local bifureations), while in other cases it cannot be
explored unless a global (nonlinear) dynamic analysis is applied [global bifurcations,
Kounadis (1992)3]. For instance, dynamic bifurcations with trajectories passing
through saddle points or cases where closed orbits become nonhyperbolic (at least
one characteristic multiplier has unit modulus) can be detected only by using a global
dynamic analysis [Peixoto (1959)]. The last analysis is the only safe way for explor-
ing chaotic or chaoslike phenomena occurring at large time. While chaos phenomena
have been observed in non-gradient dissipative systems due to strange attractors,
chaoslike phenomena may also occur in dissipative or non-dissipative systems under
potential (conservative) forces due to sensitivity to initial conditions [Kounadis
(1991)3, Kalathas and Kounadis (1991)]. The application of the global analysis is also
justified from the fact that the state of a system may be stable (unstable) on the basis
of a linear (local) dynamic analysis, while unstable (stable) using a nonlinear (global)
analysis. Examples of contradictions between local and global analyses appear for
instance in cases of dynamic buckling of geometrically imperfect systems under step
loading of infinite duration [Kounadis (1991)4].
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For the study of stability of a solution y°, being associated either with a singular
(equilibrium) point y* or a limit cycle behavior y*, we can examine the motion in the
vicinity of such a solution by superimposing the disturbance (vector) § to y°. Insert-
ing y=y’+§ into eq. (11) and expanding Y (y°+E;A;) into a Taylor series around

y’® we get
< o ]. 0 ]. 0
E=8Y"+5r &Y +5r8Y +.. (13)
where
5YS 3%yP Y
sY=| - |, 8Y°=| © |,&Y=| * |, et (14)
SYE. 8%Y3, 8°Y3,
Note that
F |
> gy ias | Y3
(51 dy1 R +E2n dy2 )Y dy1 dyon &
8Y0: . = ——-Ygg
J_ 9 o | | 9YE .. Yom
Gyt T img—) Vi = ayz,,. Ezn‘
BYe= GGt o+ B G Y Y= GGt HEn ) Vh et (15)
i layl e n ay 13 a n a 1y

where Yy =Yy (y";A;m) =Y (y°;A;n)/dy is the Jacobian matrix evaluated at y°.
It can be readily shown with the aid of relations (9) and (10) that the above
Jacobian matrix is a block matrix consisting of four square submatrices of order nxn,

that is
0 i [

Yy (hm) =] Vil —[a]
b )

(16)

where by 0 and I, we denote the zero and the identity matrix of order nxn, respec-

tively and
(Vi =[a]™ [Vs] = [Bsl [Vl (17)
From relation (16) it follows that

det Yy (y%h;n) =det [Vig] =det [a] ™ det [Vy] (18)
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Since [oj] is always a positive definite matrix the sign of the determinant of the
Jacobian depends on the sign of the determinant of the matrix [Vj].

The characteristic equation of the Jacobian matrix (16) is given by
| Yy (y"hsm) — ollen] =[6%Ta + [&] + [Vi) | =0 (19)
which is also equivalent to
|6 (o] +p [es] + [Vi] | =0 (20)

Eq. (19) upon expansion leads to the following characteristic polynomial

d(p) =0 +are™  +a™*+ ... +azn-10+azm =0 21)
- e det [V
where a1 =—trYy(y’;A;m) :Em, am= et {ai;]] (22)

Eq. (19) is equivalent to [Kounadis (1990)q]

¢(e) =11 (¢ +bip+¢) =0 (23)

i1

with the following roots of each factor

—0.5bi £/ (0.5b)* —¢;
SESGE (24)

while

n n
Ebs——-al, ‘Hl ci=ag (A7)

Clearly, the real parts of the eigenvalues (i.e. —0.5b;) depend on the damping coeffi-

cients cij as well as on A and 7, while az,...,azn-1 are functions of A, n and b;.

Regions of adjacent equilibria

The boundary between the regions of existence and non-existence of adjacent equi-
libria correspond to a certain value of 7, say 1 =1o, which is determined as follows:

If the determinant of the Jacobian matrix evaluated at the critical (trivial) state
y =0 [see eq. (12)] is set equal to zero, we obtain the buckling (divergence instability)

equation
azn =| Yy (032c3m) | =0 (25)
which due to relation (22) is equivalent to

det [Vi (Osac;m)] =0 (| i) #0) (26)
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Since the elements Vj; are linear functions of the loading A, eq. (25) or (26) yields
an n™ degree algebraic polynomial with respect to A. From these equations one can

get, at least implicitly, the relationship

=1k (27)

Following the procedure outlined by Kounadis (1983) the extreme value 1=, which
defines the boundary between existence and non-existence of adjacent equilibria is
determined by the condition

d

1) =0

ag2ny =| Yy);} =0 (28)

or

along with eq. (25) or eq. (26). Solving the system of nonlinear eqs (25) and (28)
with respect to 7 and Ac we choose among all solutions the real solution with the
minimum 2¢>>0. Since relation (28) is a necessary condition for extremum in the
curve (27), the point (7o, AJ) is either a maximum or a minimum in this curve. If
such a point corresponds to a maximum, adjacent equilibria do not exist for 7>,
while if it is a minimum, adjacent equilibria exist for >, (Fig. 1). The ecritical
states outside these regions (of divergence instability) associated with a limit cycle
response can be established only by employing a dynamic analysis. As will be shown
below the study of the nature of the critical state can be achieved only by using a
nonlinear dynamic analysis. Similarly the stability (or instability) of the critical (div-
ergence) states cannot be established unless a nonlinear postbuckling analysis is em-
ployed. Note that since agn (A2, 1o) = azm (A2, 1) =0 the point (AZ, 7o) is a coincident
(double) point in the curve v versus Ac which is also called compound branching

point.

Stability analysis

The stability of the precritical (trivial) states, regardless ot whether or not the
system is associated with static (divergence) instability or dynamic (limit cycles) in-
stability can be established as follows: Let Yy (0;A;7) be the Jacobian matrix evaluated
at y =0 and any real » with corresponding A less than its critical value. If ris a right

eigenvector of this matrix corresponding to the eigenvalue p, one can write

(Yy (Os0m) — pl2n) r=0 (29)
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or due to relation (16) in block-matrix form

= pln In o o
=0 with r= (30)

—Vil —[&l—¢h| |r r
From this equation it follows that

pl'o:l‘

(31)
(Vi ro+ ([G] + pln) r=0

Multiplying the second of eqs (31) by ¢ and substituting the expression pro from the

first of these equations we get
("I + o] + [Vs]) =0 (32
which is also equivalent to
(" [ol +p [eal + [Vil) r=0 (33)

In case of a conservative loading A, matrix [Vj] (associated with the second variation
of the total potential energy) is positive definite. Then premultiplication of this equa-
tion by r” yields

(e o] )"+ (¢ el ) p + T [Vislr =0 (34)

Since all coefficients of this equation are in general positive (scalar), eq. (34) is a g

degree algedraic equation with the following roots

= v fei rot [T esl)* =4 (" ole) (o [Vilr)]*
2 (" o))

If [cj] is positive definite both roots are either negative or in case of structural

P12 (35)

(small) damping complex conjugate with negative real parts (i.e. the Jacobian is a
stability matrix). Parodi (1952) has shown that if [a], [ci] and [Vi] are positive
definite matrices the eigenvalues associated with eq. (33) have negative real parts.
Then all prebuckling (trivial) states y =0 are asymptotically stable; namely the mo-
tion of the dissipative system converges towards the origin (trivial state) which acts as
point attractor.

However, the nxn matrix [Vj] is, in general, non-symmetric. In case of divergence
instability its determinant (being an n® degree algebraic polynomial in 2) vanishes for

n (distinct) buckling loads if v does not coincide with a double point (compound
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branching). Then for A less than the smallest buckling load %c (prebuckling state) we

have the following inequality

det [V5 (O;x;0)] >0 (A< (36)
For a load % slightly greater than A it follows that
det [V (0;0;m)] <O (A>)e) (37)

provided that %77, (i.e. there is no extremum). In view of relation (18), as stated
above, the determinant of the Jacobian matrix has the sign of the determinant of
matrix [V].

Let us first consider the case of a non-dissipative system (c;=0). If matrix [Vy] is
strongly asymmetric such that the matrix [Vij] = [Bs) [Vs] is not symmetrizable the
system is called circulatory. Nevertheless, the present analysis deals with pseudo-con-
servative systems in which by definition matrix (Vi is symmetrizable ; that is there
exists always a positive definite matrix S such that [Vig] =S [Vij]TSd. If r and qT are
the right and left eigenvectors corresponding to the eigenvalue ¢ by virtue of eq. (32)

for [c;] =0 one can obtain

(X + (Vi) r=0 or (&' + [Vy]"S ™ r=0
(38)
q" M+ [Vi)) =0 or (87487 [Vy]) Sq=0

Since [’\\,’dij]TS‘1 :Sﬂ[’Vij] is a symmetric matrix it follows that r =Sq and qTZrTS_l.
Multiplication of the first of eqs (38) by qT=rTS-1 yields
— e’ [Vij] S
N
rSr

If the above quadratic forms are associated with positive definite matrices, both

(39)

eigenvalues are purily imaginary. The origin (trivial state) is a center; namely the
motion is bounded associated with closed trajectories around the center.

In case that [c;] 70, both matrices [¢;] and [Vij] are symmetrizable, while the
former has positive eigenvalues if [cij] is positive definite. In view of the fact that S is
not uniquely determined [Gantmacher (1964)] the question which now arises is
whether it is possible to find a positive definite transformation matrix S which
renders both the above matrices symmetrizable. Unfortunately this is not always pos-
sible; fact which, however, does not imply that there is no asymptotic instability. If
such an S matrix exists then one can write [Vﬁ] =S [Vij]Ts_l and [&) =S [&]™S™.

Instead of eqs (38) we have now
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@S +ola)"S ™" + Vi) 'S r=0
= 40
("8 + oS &) + S [Vi]) Sq=0 -

If [c;j] is positive definite matrix the symmetric matrix [&]"S ™ is also positive definite.

Premultiplication of the first of eqs (40) by r” leads to an algebraic equation of 2™
degree with both roots having negative real part provided that the symmetric matrix
[Vij]S—l is positive definite [see also Chetayev (1961)]. Note also that according to
KTC (Kelvin-Tait-Chetayev) theorem the above dissipative system is asymptotically
stable (unstable) if the corresponding nondissipative system ([ci] =0) is stable (un-
stable).

In case that S is a positive definite matrix which renders symmetrizable only matrix
[Vi,'], then [&]"S™? is not a symmetric matrix However, one can follow the above
procedure by writing the last matrix as the'sum of a symmetric and a skew symmetric
matrix. If the symmetric matrix (associated with a positive definite [c;] matrix) is
positive definite the dissipative system is associated with complex conjugate eigen-
values with negative real parts; namely the origin (trivial state) is asymptotically
stable. A recent work on symmetrizable nonconservative systems is given by Inman

and Olsen (1988).

In the region of non-existence of adjacent equilibria there are no real values of X
for which the determinant of the non-symmetric matrix [Vi,'] vanishes. For A less than
the dynamic critical load inequality (36) is valid too. The development outlined above
for the case of divergence instability is also valid. Therefore, in both cases (i.e. diver-
gence and dynamic instability) all eigenvalues of the Jacobian matrix have negative
real parts (all bi in eq. (23) are positive); namely the precritical trivial state (origin) is
asymptotically stable (associated with a point attractor response).

Recall also the more tedious in use criterion for the asymptotic stability of Routh-

Hurwitz which is satisfied if all Routh-Hurwitz determinants A; are positive (i.e.
A;>0). Note that Ax=axAk-1 [Gantmacher (1964)] and

k(k~1) 1.k

Aa=(-1)" 2 I<I<xi+x,-) (k=1,....2n) (41)

This is Orlando’s formula which is very useful for the subsequent analysis.
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Critical states

In case of divergence instability the buckling equation (25) or (26), due to relation
(24), yields that one (at least) of ¢i's vanishes, say ¢j. This implies that one root of eq.
(24) 1s zero and the other is equal to —b; (<0). Therefore, at A =2Ac one (at least) pair
of complex conjugate eigenvalues is transformed to a zero eigenvalue and to a nega-
tive eigenvalue. For A slightly greater than ¢ the determinant of [Vij] (and the cor-
responding determinant of the Jacobian matrix [Yy], being a nonlinear analytic fune-
tion of A, changes sign becoming negative [see eq. (37)] provided that the case 77,
(extremum in the curve v vs Ac) is excluded. Then, one of c¢i’s becomes negative
which due to eq. (24) implies that the previous zero root becomes now positive.
Therefore the trivial state (origin) becomes unstable.

The dissipative system although locally unstable might be globally stable in case of
existence either of a point attractor (due to a stable post-buckling path) or a limit
cycle attractor. This can be established only by employing a nonlinear analysis. Clear-
ly, due to the fact that the Jacobian matrix is singular (i.e. 5Y°=0) one has to take
into account variations of higher order in eq. (13). A very efficient linearized tech-
nique for discussing the global stability (see introduction) of the critical (trivial) state
which can be used is associated with the centre manifold theory.

Note also that a double zero eigenvalue occurs when
agn-1=agn =0 (42)
Since
agn-1=bicacs...cn + cibacscs...cn + ... +cicz...en-1bn (43)

condition (42) may occur for suitable values of bi’s (i.e. of the damping coefficients
cij). For instance if by =c1=0 then ag,-1=az.=0.

In conclusion the vanishing of one eigenvalue is associated with a static bifurca-
tion. A static bifurcation is also a dynamic bifurcation since the latter implies a sud-
den qualitative change of the system response as the loading control parameter varies
smoothly (provided that there is no other dynamic bifurcation prior to the static
one).

In case of non-existence of adjacent equilibria the critical state A= Aer occurs when

the Routh-Hurwitz determinant Ay in relation (41) vanishes, that is

Ax-1=0 (k=2n) (44)
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which implies that the sum of —at least— two roots of equation ¢ (p) =0 is zero.
Since the determinant of the Jacobian —as shown above— is positive (i.e. aga>0)
the cases of a double zero root or a pair of opposite roots are excluded. Hence eq. (44)
implies that the equation ¢ (p) =0 has one —at least— pair of pure imaginary roots.
Namely, the critical behavior is associated with the vanishing of the real part of one
—at least— pair of complex eigenvalues. This, due to eq. (24), implies that one of bi’s
becomes zero, say bj=0; hence the purily imaginary eigenvalues are +ive
(=v-1).

Since —b; (i=1,...,n), being a function of A, is negative for A<<he and equal to
zero for A=A, then for A >Aee (if dbi/dr70) it becomes positive. This means insta-
bility of the trivial state (origin). However, the dissipative system may be globally
stable exhibiting a limit cycle attractor. This is a typical case of a Hopf (dynamic)
bifurcation [Nemytskii and Stepanov (1960)].

In view of the above development one can observe the following: While the vanish-
ing of the determinant of the Jacobian matrix (one, at least, eigenvalue becomes zero)
is associated with a static bifurcation (being also a dynamic one), the vanishing of the
Routh-Hurwitz determinant Agn-1 (one —at least— pair of eigenvalues is purily imagi-
nary) is associated with a dynamic bifurcation. The stability or instability of such a
dynamic critical state cannot be explored unless a nonlinear dynamic analysis is em-
ployed. Since the Jacobian determinant is singular (Y°=0) one has to take into
account variations of higher order in eq. (13). Among the aforementioned local (line-
arization) techniques for establishing the nature of the dynamic critical state (origin)
the more efficient, as stated above, is the centre manifold technique. When the com-
pound branching (double) point (¢, 7o) is associated with a double zero eigenvalue,

the divergence critical state coincides with the dynamic critical state
Agn1=0 (45)

since agn = agn-1 =0 yields Agn-1 = agn-1A202=0. However, in general, agn-170 which
implies a discontinuity between the static (divergence) critical load Ac and the dynam-
ic (associated with limit cycles) critical load Aer.

In addition to the study of the nature of the critical state (static or dynamic) it is
worth discussing the transition from point attractors (regions of adjacent equilibria)
to limit cycle attractors (region of non-existence of adjacent equilibria). For instance,
a reasonable question is to investigate whether for A>2c a limit cycle attractor may
oceur in some region of adjacent equilibria in the vicinity of the compound branching

point (A2, no). Certainly this is impossible to occur in case that all postbuckling modes
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are independent to each other (Fig. 2a). Clearly, the dissipative system exhibits a
point attractor (due to the stable postbuckling path). However, the response may be
different for A>Ac when there is only one postbuckling path passing through two
consecutive branching points which correspond to the first and second buckling (div-
ergence) loads A" and AY, respectively (Fig. 2b). It was found numerically, that
there is a certain A* >3 below which the system displays a point attractor, while
above A it experiences a limit cycle attractor [Kounadis (1990)2).

The above phenomenon of existence of one postbuckling equilibrium path associat-
ed with the first and second buckling load occurs only in non-gradient systems either
discrete [Kounadis (1990)2] or continuous [Kandakis and Kounadis (1992)] for which
there exists a coincident critical point (A¢, 7o) determined through the solution of eqs
(25) and (28).

The above phenomenon together with the nature of the critical (trivial) state can-
not be explored unless a nonlinear (global) dynamic analysis is employed. These ques-
tions are discussed below by using the center manifold technique. Before closing this
section it is worth noticing that the compound branching point (Ae, 7o) although
associated with a limit cycle response (while it is an equilibrium point) it is not a

Hopf bifurcation (being always related to purely imaginary eigenvalues).

Center manifold technique

According to the center manifold theory eq. (11) must be put in the standard form

|Carr (1981), Perko (1991)]

=Ax+f(x,y.€) } e
y=By+g(x,y.€ (x,y,€) eR"xR"xIR”

where
£(0,00)=0, Df(0,0,0)=0 } -
2(0,00)=0, Dg(0,0,0)=0

A is an nxn matrix having eigenvalues with zero real parts, B is an mxm matrix
having eigenvalues with negative real parts, while f and g are C" functions (r=2) in
some neighborhood of (x,y,e) =(0,0,0) with corresponding Jacobians Df(0,0,0) and
Dg(0,0,0); Finally eelR” is a vector of p parameters.

An invariant manifold is called center (local) manifold for eqs (46) if it can be

represented as follows

16
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We(0) ={(x,y,6)eR"xR™xR" y=h(x,e), |x| <1, x| <&, h(0,0) =0, Dh(0,0) =0}
(48)

for &1 and & sufficiently small.
In parametrized systems we include the parameter ¢ as a new dependent variable as

follows

x=Ax+1(x,y,€)
y=Byt+g(x,y,€) (x,y,e) eR"xIRxIR? (49)
e=0

Under the above conditions there exists a C* center manifold for eqs (46) y=h(x,e)
for x and € sufficiently small. Then, the dynamics of eqs (46) restricted to the center
manifold, is for u sufficiently small, governed by the following n-dimensional vector
field

u=Au +f(u,h (u,¢€),€)

=0 (u,€) eR"xIR? (50)

According to the 2nd theorem of the center manifold theory if the zero (origin)
solution of eq. (50) is stable (asymptotically stable) or unstable then the zero solution
of the original system (46) is stable (asymptotically stable) or unstable. Let us suppose
that the zero solution is stable. Then if (x(t), y(t)) is a solution of eqs (46) for given ¢
with (x(0), y(0)) sufficiently small, there is a solution of eq. (49) such that as t =

x(t) =u(t) +0(™)
y(x) =u(t) +0(e™) (51)

where y>0 is a constant.

Supposing now that all the above assumptions of the center manifold theory are
satisfied, the next step is to compute the center manifold.

From the existence theorem we can suppose that there exists a (local) center mani-
fold for eq. (49) given in relation (48).

Substituting y=h(x,e) into the second of eqs (46) and taking into account that y=
=Dh(x,e) x where x is taken from the first of eqs (46), we obtain

Dh(x,e) [Ax +f(x,h(x,€),6)]] = Bh(x,€) + g(x;h(x,€),€)
or  N(h(x,e)) =Dh(x,e) [Ax +1{(x;h(x,€),€)] — Bh(x,e) — g(x,h(x,€),€] =0 (52)

Unfortunately it is more difficult to solve the last quasilinear partial differential

equation than the original one; however, on the basis of the third theorem of the
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center manifold theory we can approximate the center manifold to any degree of
accuracy.

According to this theorem: Let ¢: IR —~IR™ be a C! mapping with ¢(0) =D¢(0) =0
such that N(¢(x)) =0 (|x|% as x—0 for some q>1. Then

Ih(x) —¢(x)| =0 (|x]%) as x—0. (53)

Eq. (13), obtained from the original dynamical system (11) through a Taylor’s
series around y°, can be written with the aid of relations (12), (14), (15) and (16) as

follows
X 0 | 5 x f], xeR"
2 + (54)
vl 1= Vsl —[es] yl l8&l, yeR"
i J.K: 3 +~f ~ .. (55)
y=—[Csly—[Vilxtg
where
e 1 — 2. $ g 1 82 4
X— E_.l ) )’— E,ml ' s 0 ’ g_ i Yn+1 + 6 83Yn+1
. . A s (56)
E_.n EZn 0 %Bzan +%83Y2n

By virtue of relations (56), egs (55) can be put into the standard form of eq. (46),
that is
x=0.x+f(x,y,e)
y=—[Cily tgxye)
where f= y+f‘—‘y and g=— [’\7i,-]x+ g, while e= (l,‘q)T. Note also that the matrices

©7)

A and B in eq. (46) are equal to 0 and —[cjj], respectively. Given that [@;] is always a
positive definite matrix and [cy] is either a positive or non-negative definite matrix,
then their product [Bj] [c] = [Ci] is a matrix with positive or non-negative eigen-
values. Therefore the matrix — [¢5] has either negative or non-positive eigenvalues.
Before employing the center manifold theorem one should transform the (singular)
Jacobian matrix Yy(0;);n) into its canonical form. Since this matrix is associated with
n zero eigenvalues and n complex ones the transformation matrix can be put into
Jordan canonical form [Gantmacher (1964)]. Thereafter one should check whether

the necessary requirements for employing this technique are satisfied.



244 ITPAKTIKA THEX AKAAHMIAY AOHNQON

4. Illustrative example

Consider Ziegler’s two-degree-of-freedom nonlinear dissipative system shown in Fig.
3 for which a lot of numerical results are available. The system, being geometrically
perfect, is subjected to a partial follower loading A of constant magnitude acting at an
angle n02 with respect to the axis of the upper link (autonomous system). Such a
loading is tangential for =0 and constant directional (conservative) for n=1; that
is for n#1 it is nonconservative [Plaut (1976)]. Lagrange equations of motion, in

dimensionless form, are given by [Kounadis (1991)2]

a+m&+@mwkwww&m@—%+mmIwﬁﬁv "
B2+ 01 cos (01 92)—025m (01— 02) + baflo — by + 3_6\;:0
where

Iae_‘%‘ B2+ 810F + 1107 — 82(01 — 02)% +v2 (61— 02)> — A sin [01 + (n— 1) 62] 59)

_02 014 32(01 62) —Yz( 62) —Asin 7162

The matrices [ol, [cil, [Vil, (8l = [ew] ™ [€4] and [Vij] evaluated at the trivial

state (origin) y —0(61—92—0) are given by

m+1 1 Cil €12 b1+b2 _bZ
(o] = wlegl = =
1 1 ci2 ¢ —bh —hk
2—x —1—x(n—1) g
[Vi] = , [Bol =7
— 1=y = 1-t=m
: b1 +2bs —2by - SR r—2
Esl=m y [V =
—(m+2)by (m+2)b A—m—3 mt2—A(1Fmn

(60)

By virtue of these relations the characteristic equation of the Jacobian matrix (21)

is the following
p4+a193+a2p2+a39+a4=0 (61)
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where a;= % [b1+ (m+4)by|, az= % [b1b2+m+5—A(2+my)]

| | (62)
a3=q7 b1 (1 =M + b (1 —2n7)], a3 =757 (1 — 3wy + )
Application of relation (24) gives
b 2 A 2 i,
912:—?11‘(%—01) ,92,32—%2i(%—02) (63)
where
b1 +ba=a;
c1tcetbibs=as
‘ (64)

bica +bgc; =ag

C1C2 = a4

The boundary between the region of existence and nonexistence of adjacent equilibria
is determined by solving the system of equations
day -
== (65)

from which we obtain

T
7)0:3, /\c:?- (66)

Obviously for 41>4/9 the dynamical system displays a divergence instability, while
for <<4/9 there are no adjacent equilibria and the system exhibits a limit cycle
(stable or unstable) response. The static (divergence) buckling load Ac is given
through equation as=0 which gives

1

n=pt @) (67)

The dynamic critical load Acr is obtained through the equation

A3= (ajag —ag) a3 — aray=0 (68)

where ai (i=1,...,4) are given in relation (62). Condition (68) can also be obtained by
inserting into eq. (61) p==iv (v=real, i=\/——l) and thereafter eliminating v.
Substituting the expressions of a; (i=1,...,4) into eq. (68) we obtain an algebraic
polynomial of 2nd degree with respect to Aer [Kounadis (1990)2, Kounadis and Avraam
(1991)] given below [see eq. (84)]. From this equation it is clear that A depends on
both, masses and damping, in contrast with the case of divergence instability where

these parameters have no effect on the critical buckling (divergence) load Ac.
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Stability of precritical states

Let us consider the case n=0.5 (divergence instability) with the following data:
m=2, hy=0.08, ho=0.01 and A=0.99<h.=1. It is not difficult to show that both
matrices [Vij] and [Cj| are symmetrizable associated with the same positive definite

matrix S which renders [V;j]S and [¢5]S symmetric, that is

1( 201 —101|[ 006 —0.04 [ o 03208
[VilS =5 =%
—401  202[[—004 0238 —03214 06412
' ' : (9
010 —002][ 006 —004] [ 0.0068 —0.0088
- -
G1S =5 =35
~012  004||—004 0238] " |-00088 00143

Since both the above symmetric matrices are positive definite the system is asso-
ciated with two pairs of complex conjugate eigenvalues with negative real parts. Hence
the prebuckling (trivial) state is asymptotically stable. The same result could also be
obtained by using the Routh-Hurwitz stability criterion. According to this criterion
this state is asymptotically stable if all A;>0 or equivalenty if a;>0 (for i=1,...,4)
and also A3>0. Indeed one can readily find that a1 =0.07, a2 =2.0154, a3 =0.02025,
44 =0.02525 and A3=2.43X10".

Let pitv; \/:T (1=1,2) be the complex conjugate eigenvalues for A <A, where
wi=—0.5b; and v = [ci— (0.5b;)*]”%. Application of Orlando’s formula (41) gives

As=4pape| (1 +p2)® + (v +v2) ] [(1+p2)* + (v — o)’ (70)

which for A3>0 yields pipe>0. Since 2(p1+p2) =—bi—be=—a;<0 it is clear
that both p; and p2 are negative and thus all eigenvalues have negative real parts;
namely in such a case the asymptotic stability is assured if only A3>0 and a; >0.

Finally, solving the system of eqs (64) for the case m=2, h1=0.08, b2=0.01,
71=0 and A=2<he=2.07976 (implying A3=2.5X10">0, a;=0.07>0) we find
due to eqs (63) the following eigenvalues

_ 005 [ _(0.05)7% .
pr2=—"% =+ (0.9988 (74 ]1 =—0.025=%0.9991i
0.02 0.02)2)” A=VEL @
2]1%
92,32—';2—1' [0.5006'— ('70—) ] =—0.,01'=3-0.70751
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Critical and posteritical states

For the problem under consideration eqs (56) become

B £s 0 —82Y3 +— 83Y3

= V= f— 8= (72)
: P 0 Ly, + Ly
G2 S 2 4 6 4

where after a cumbersome manipulation we find

e =1 (2% —3) E+ 28,5 — 15,5

Y= (31— (m +2)3] F— (m+2)35+2 (n+2) 1% )
%m:—@;“#@l—ayaﬁ Fhe il TN TR
b4 Zm
iy (E,l QZ)

i [+ 20 = 8% + 2 ([ — (= 1)) B8 -

—3(q—1) EE2—3 (n—1)%E3E1} + (El;z&) {(m+6 —k) G~ [mTH ‘1(1+L;L)]52}

2
; +2)b+ (4+3 — ‘
Loy, =) gy, (IR OTI e B

4+ (m+1) (51— 53-1— [y183 + (m +: )vz(al_iz)sl+'6)\;{[<51+(T1_1)E2]3_

& —5)
2m®

Clearly, e= ()\,n,81,82,Y1,Y2,b1,b2,m)T.
Writing eqs (73) for the simplified case with m=2, §1=382=vy1=y2=0 (corres-

— (m+1) 753} + {{(m+2) A —4m —6]&; — [(mn+m+2) A — 3m —4] £2}

(73)

ponding to a Hookean material) we find eqs (4a) given by Jin and Matzuzaki (1988).
Application of the center manifold technique in the neighborhood of the double criti-
cal point (10 =4/9, he=3/2) on the side of divergence instability is comprehensively
presented by the aforementioned investigators. However, their analysis refers exclu-
sively to the case of a double zero eigenvalue occurring for a3=as=0 [see eqs (42)
and (62)]; namely for suitable values of the damping coefficients b1 and be. For this
case (a3=as=0) they have found several distinct dynamic bifurcations (associated with
stable limit cycles) without determining the region of divergence instability where
these phenomena may occur. This region can be determined as follows:

Equation ag=0 by virtue of relation (62) yields
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il
p=froBen—l M) (74)
by 1=y %_)\c
For h>0 the last equation leads to
(he—30) (he—=-5) <O
. Y| Y|
_from which we get : 1
) e 75
<<y @)

The condition that both roots of equation as=0 must satisfy inequality (75) yields

1
§<5 (76)

Eq. (74) and a3 =0 give [Kounadis (1990)2]
_ 1420 (b+1)® _ b
=15 et ety OTh
where Ac concides with the 1% buckling load of eq. (67) if »<<1 and with the g
buckling load if 5>1. Hence for the damping ratio given in relation (74) we have

) (17)

critical states (associated with dynamic bifurcations) with a double zero eigenvalue in
the small region 4/9<xn<<0.5 (Fig. 4). It was established by the author [Kounadis
(1989)4] that in this region the nonconservative system exhibits one postbuckling
equilibrium path passing through the 1% and 2" branching point (Figs 2b and 5).
Note aslo that in case of equal damping coefficients (b=»51/ b2=1) the compound
branching point (no =4/9, A =3/2) is associated with a double zero eigenvalue (be-
cause ag=as =0). It is worth noticing that although the compound branching point is
a static equilibrium point it is associated with a dynamic bifurcation related to stable
limit cycles (Fig. 6).

Another important phenomenon occurring in this region (4/9<%<0.5) is the
stability of the postcritical trivial state for a load slightly above the 2™ buckling load.
Indeed for 1 =0.45, A=1.7 (> A =1.666...), by =0.01 and bz — 0 the trivial state acts
as point attractor (a1 =0.005>0, A3=1.083>0) after the decay of persistent chaoti-
clike transients (Fig. 7). Clearly for A=A.=1.666... and h=2 the system exhibits a
dynamic bifurcation associated with a double zero eigenvalue. Then for A>1.666 we
have a stable limit cycle response (Fig. 8).

Another important case is to discuss whether a Hopf bifurcation may occur in the
region of existence of adjacent equilibria. Les us consider the case with: n=0.45,
A=2>22=1.6666, b =0.10, by~ 0 and m =2. Then A3 =0 which implies that two
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eigenvalues are complex conjugate and the other two are purily imaginary. In this
case we find: a;=0.05, a2=3.5—1.45%, a3=0.05—0.0225% and
a1 =0.2252*—0.6754+0.5. For A=1.99 we get A3>0 with both eigenvalues com-
plex conjugate (p12=—0.02424 £0.72285i, g34=—0.0007610.302201), while
2 =2.08 yields As<<0 implying one pair of complex conjugate eigenvalues with nega-
tive real part (p12=—0.11943 £0.52320i) and the other pair with positive real part
(p34=0.09443 £0.48187i). The phase-plane portrait of this dynamic (Hopf) bifurca-
tion in the region of divergence instability is shown in Fig. 9a.b. Note that for A<2

the system exhibits a point attractor, whereas for A=2 a stable limit cycle response

(Fig. 10).
If we choose again by =0.10 and he~ 0 then Az3=0 by virtue of eqs (62) gives
B2
Agzﬁ[nﬁ—2(n+1)x+4lzo (78)

For =1 (conservative loading) the last equation yields A3 >0 regardless of the value
of A (excluding the case A=2 for which A3=0); namely the case of a limit cycle

response is impossible. For n# 1 eq. (78) vanishes for

=2, 7\222 (79)
|
Since at the same time as must be positive, it follows that
i
5 (1= >0
or |
7\<7 (80)

From relation (79) and (80) we obtain again n<{1/2 [see eq. (70)]. Namely, in the
small region 4/9<<%<0.5 regardless of the value of 7 the system may exhibit (for
certain damping coefficients) a Hopf bifurcation at A=2.

There are also other dynamic bifurcations occurring in the same region which,
however, cannot be established through the above qualitative analysis. A typical dy-
namic bifurcation with trajectories passing through the saddle point (trivial state) of
Peixoto type is shown in Fig. 11. Note that the associated eigenvalues do not have any
characteristic property indicating the limit cycle attractor response. This is a global
dynamic bifurcation which cannot be established unless a nonlinear dynamic analysis
is employed. An efficient analytic approximate technique for solving eqs (57) and (73)
is developed by the author [Kounadis (1989)2, (1992)4].

All the above findings refer to a Hookean material (8;=382=y1=v2=0). The au-

thor has shown that all critical (divergence) states corresponding to eq. (67) are stable
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(contrary to the classical analyses) since the following stability condition is always sa-
tisfied [Kounadis (1992)2]
—1 )3, 12—
he [ (1 + 1n—v;xc) " ’(’1 syl b (81)
For a nonlinear elastic material with 8, =82=0 and y1=vy2 =" the author [Kounadis
(1989)4] has derived the following stability condition
yh+£>0 (82)
where £ is equal to the L.H.S. of inequality (81) and fi is given by
L= 4 1 ]
1= (1—mo® 30—
Clearly, if inequality (82) is not satisfied (due to y) the trivial state (origin) is

fi=6r+18 (1— 20 [ (83)

unstable.

From the above development it is clear that a dynamic bifurcation does not
imply a static bifurcation. On the contrary the static bifurcation (asociated with a
zero Jacobian eigenvalue) is also a dynamic bifurcation both occurring at the same
loading which is the static buckling (divergence) load. However, such a coinci-
dence exists only in case of bifurcational systems provided that dynamic bifurca-
tion does not occur prior to static one. In case of limit point pseudo-conservative
systems the author has shown that dynamic buckling (associated with a global
dynamic bifurcation) occurs always for a load smaller than the limit point load
(being always an upper bound of the dynamic buckling load). Moreover, for non-
bifurcational (limit point) undamped systems dynamic buckling occurs via a regu-
lar point lying in the vicinity of the unstable postbuckling equilibrium path. Nu-
merical simulation has shown that dynamic buckling occurs when at least one
generalized coordinate of the system satisfies the inflection point (sufficient) cri-
terion [Kounadis (1991)]. Therefore, for such systems we have derived the im-
portant finding that the nonlinear dynamic analysis yields a critical (buckling)
load always less than that derived via a static postbuckling analysis. Thus, the
Ziegler’s (1968) kinetic criterion for establishing critical loads of nonconservative
systems is valid only in case the latter are associated with trivial fundamental
paths (bifurcational systems) provided that dynamic bifurcation does not exist
prior to static one.

The critical condition in the region of non-existence of adjacent equilibria is given
by eq. (68) which for m =2 yields the following equation for determining the dynam-

ic critical load A =A¢r

AE+ B+ C=0 (84)
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where
A=nb3 [P+ 4b (1 +27) +4(4n—3)], (b="h/by)
B=1[4 (5m—3) —2b* (1 +n) —2b (T+ 11v) — nbb} (H*+8b+12)] (85)
C= 1 [4+33b+ 45>+ bb; (B +7h+6)]

Since we are seeking for positive A the discriminant of eq. (84) must be non-nega-
tive, that is

BF—4AC=0 (86)

which furnishes a relationship between 7, b1 and bs. A thorough and detailed discus-
sion of eqs (84) and (85) in connection with various physical situations which may
occur is given by Kounadis and Avraam (1991). Thus, the subsequent development
will be restricted mainly either to new findings or to clarifications of previous ones
obtained by the author and his associates.

Let us consider the case by —0 (i.e. b—0) then eq. (84) yields

70 (n—3)3°+ Gy —3)A+1=0 (87)
from which we get i
M= with 7<3/4 (88)
N=——  with 7<0
" i

Since ag must be positive then

1— 2 >0 (89)

This inequality is consistent with the first of eqs (88) if 7<<1/2 (region of diver-
gence instability) and with the second of eqs (88) when %<0 (region of no adjacent
equilibria defined by —0.305<7%<{0). Regarding the first case one can obtain the
following important finding: For 7=0.48 we get ha=10.925925...<A.=1.09175. This
yields as >0, while A <A implies A3>0, and A > Ao implies Ag<0. Namely, in the
small region of divergence instability (4/9<%<{0.5) a Hopf bifurcation (associated
with stable limit cycles) occurs for a load A =0.925925... less than the divergence
buckling load Ac=1.09175 (Fig. 12a,b). Note also that for constant 1e[4/9,0.5] there
appear different types of bifurcations as the loading A increases from zero. For in-
stance, at 7=0.48 the system exhibits a point attractor for A <<Ae=0.925925..., a
Hopf bifurcation for A=A, a static bifurcation (one eigenvalue zero) for

A>2D=1.09175, a stable dynamic global bifurcation of Peixoto type (without any
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characteristic property in the eigenvalues) for A< =1.90825, a stable static bifur-
cation for A=2%, a stable dynamic bifurcation (with a double zero eigenvalue) for
A>2& and a stable Hopf bifurcation for 2=2.

For no=4/9, b=1 and hi=Dbx—0 eq. (84) gives Ae=1.5; namely there is no
discontinuity in the critical load at the compound branching point contrary to the
classical (linear) analysis. The phase-portrait of this point (,=4/9, A&Z=1.5) for
b1=0.01, b2=0.05 is shown in Fig. 13a,b. For the case of tangential load (v =0) eq.
(84) yields [Herrmann and Bungay (1964)]

L,
which for by =h2=0.10 and by = be—0 (vanishing damping) gives Aer = 1.469286 and
her=1.4642806, respectively. Note that the linear analysis gives 7\@=O.5(7—\/§) —
2.085786, that is much higher load than the “exact” latter one. Another significant
discrepancy between the classical (linear) and the present nonlinear dynamic analysis
is that the critical trivial state according to the first analysis is unstable (associated
with an unbounded motion), while according to the latter global analysis this state is
stable (see Fig. 14a,b). Clearly, this is due to the omission of geometric nonlinearities
which affect decisively the global (long term) response of the system.

The minimum and maximum dynamic critical loads for the case =0 are 1/3 and
2.08578 respectively, associated both with a stable Hopf bifurcation [Kounadis
(1992)5]. While the damping ratio b= h1/bg may have a considerable effect on the
dynamic critical load, in case of h=1 the effect of damping on this load is very small
[Kounadis (1990)2]. Note also that the case of existence of two pairs of purily imagi-
nary eigenvalues is not possible to occur because due to eqs (70), (63) and (68) we

have a3=a4=0 (i.e. a double zero eigenvalue).
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Pavépeva yootiniig xai GAANG QUOEWG XATA THY W) YPOLELIXY
avdAvoy TdV xatacxeuv@®v: ITocotind - woloTiNd XpLTHELA.

‘O Sraxexprpévoc “OMNavdog Epeuvyring xal *Axadnpaixte Koiter pé v dnupo-
owevbeica 7o 1945 otd ‘OMavdixa Siaxtopn Tov mpaypateto Tepl THe AEYLATS
UETAMOPIOATS CVUTIEOLPORAS TGV %aTaoxevdY (Tob Eywe Buwe YVwoTy WoAg T0
1960, uerappacBeioa téte ot Sikpopes dhheg yAdooes) Epepe 670 g dukpopa
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#ijc avalboems pmopoloay va Srametwloly xal pehernfolv. Koata v Sexactia tob

1960 &pyroe va yivetan xatavontd i ) xhaoouy) (Yeauuwixy) dvdiuen Tév Popéwy
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3¢v clvaw péve dvemagxns v thy 6p0Y éntlumen the @éooveas ixavdTyTds Toug
(63nyodon ot omatdhy YAxoD) &AAa éviote xal Emuxivdvry. To tehevtaio Tolto pmo-

<

pel v& oupBei .. oThY mepimTwon xataokcudy edachNTwY ot dréheieg, Gmov §
TpoypaTIey LY TOD %0Loluov @ogTiov Avyiouot Shvatar v elvar N wion B vl
wixpbdTepn dnbun Exetvng mod pig dider W xdacow) (yoaupx) avdlvorn.

“H Smapyovoa &x Abymv oixovoutog tdon Y Aemtdreges xal élapodreoes xata-
onevés pE v ueyariteon Suvary) pégovoa ixavdtnTa elye Og Quoikd Emaxbérovbo
Ty dugavian dxbun mod Evrovey gawoudvor aotdfelas. Qg & TodTouv ) Epappoyy
un yoapuuuxijc avarioens tév rxatacxevdy xabictato Emitanting. Adty Thy Théoy
ToNOTAOXY, GvdAuoy) Srevxbhuve i &v TG petald dvamTuly kol Skdooy TEV NhexTpo-
vix@y OmohoyioTdy 6& uvdvacsud pé ThY Emwiénen vEwv UTOAOYLETIXGY TEYVIXEY
(Bmwe m.y. elvar of uébodor memepaouévaw drapopdv, memepaouévawy xal cvvogLax@y
otouyelwy, oi Teyvixés Oatapayijc, 1 AOVUTTOTIXG AVAAVeY XAT.).

PANG 2oy ) un) yoapuixy avdAvon TGV xaTacreu®dy AOYw oTaTIkic pooTicems
pepe ot @idc pawvbpeva EacTiniic dotabeias, ) papuoyn adtic ThHE dvalloewg yia
®aTAOAEVEG Tonetueveg ot dvvauxn) @dpTion dmexdhule Eva w660 VEWY pavoué-
vov Tod TpoxdAesay Al éravastacn oth Bewpla T@Y dvvauxdy cvoTnudTwy
wol. Orapooundy EEiodhoewy (mob cuvdéovrtar pE TEoBAAUATE AOYIXGY TLudY). Xm-
pavTixd pbho mpdg Ty xaredbuven adty Emale N dAAmAeidpaon THg yewueTouriic
W) YoauuxdTTOS %ol THe dmooféoews. Lhpepo Eyst xatacTel cupes &TL 7 dxplPig
Tpogopotwoy 6ToladnToTe xaTaoxevTc Tpolmobéter Eti xal of dbo adrés maupdye-
TpoL mpémer vo Aoy O’ BYm 6Th oyt GvdAveY).

Kot v tedevtaio dexactia mapiatapebo poptupss piig évivmwotaxic avii-
o0 THE i) yoauuuxijc dvvapeijs, T omola xatéotn Suvaty de’ Evog pév ydpLe oTd
peyddo Bewpnrina Phuate Tie motoTixis Tomoloyixijc uelddov tol Poincaré xoi
&’ Etépou ydpig oTHY onuavTixy) EEEMEY TV avaloyuxdy xal dxorovlwe ypnuaxdy
dmodeyioTdy. M yeapuixa @uvbueva, Smwg yooTiea @uwbueva (dpeildueve G&
mapdbevoug EAnteg, of amAodg 7 mohamAodg EAxtes, Qauvoueve petevotabeiag xol
douvéyetag xplolunmy poptiwy, pawdueva educlnoiong ot dpyuxés dréleieg ) dmé-
oBeoy) Smothvovrar 6¢ dudpopovs xAddovs T@Y Epnonocudvey EmeTnudy (§rmg
7.y, ot Duonn, Metewpohoyia, *Asctpovopia, Xnuetx, *Hhextpopayvnriops, Bro-
royta, Oixohoyta, Olxovopla xhm.) xai &pydtepa 6¢ moAd wixpbdTepn ¥Alpaxe 6T
Muyovins,. Ztd onpeio adtd yevwarar 7o ebhoyo EpdTnuma %utd 7660 QuLVOUEVE Yoo-
g PUoEwS 1) PUoEWS avdhoyng uE Te dvwTépw Eupavilovtal 6Ty TEpinTwen M)
yoauuxijc darioews TEHY XATAOREVEY AOY® Suvaixic QopTicen.

‘H édnavinon &860n Eupecon xata Ty mopela pilic ovotnuatiic kol Evrovyg
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gpeuvnTixtic Tpoomtabetag Tecodpwy ET®Y Tob cuyYpapws THG Tapovstalouevns (e-
Mg ue puabntéc ) cuvepydtes Tov, M 6molx elye Mg oTéy0 TV ebpeorn dmoTehes -
Tx®V pelédwy %ol ToLOTIXEY-TIOGOTIXGY %ELTNElwY VL& THY Wi YPoUULxl Suvautxy
AVEAVGY TEY xaTaoxeVdY. AT pLe cetpa Tetdvta ddo (32) dnuocteboewy (BA. BBA.
avap. 1-32) and 7ig 6moieg elxoot Yo (22) of Eyxpita Teprodina Siebvolsg xuxho-
goplag xol déxa (10) avaxowvmeeig 6t Siebvi) cuvédpta (xatébmy TEOGKANGEWS) GTNHY
Edpdmy, H.ILA. xat Kavada #M0av 670 @ég yia oty popa Eviiapépovta xal év-
TUTWGLOXA Y KOTIXRTIG LOPPTIG xatl SAAX PALVOUEVEL XaTO THY SUVALULXT] GVIAVLGY) BTTAGY
notaoxeLdy Tob IloArtiod Muyavixol. Zuyypbvws avetpdmnooy edpnuate SLaxs-
nptwévey peuvntdy (6nwg m.y. G. Herrmann, Nemat-Nasser, H. Leipholz, R.
Plaut) mob elyav EEaybei Paoer the whacoixiic (ypopuwixic) Suvauixiic avalboews
xol T 6mola dnbuyn xal onuepx upavilovrar 6t Siebvi) suyypaupate. *Eniong on-
pepe xatéoTy duvaty T Epunvela xal 7] TOLOTIXY K&l TOGOTIXY GVAAUGY] StapopwY
PALVOUEVODY SUVOULIXTIG GUULTIEPLPOPES TAV XATAGKEVGY, BTWG T.). THE XATAEPEVGEWS
70 1940 t7¢ xpepactic yépupac Tacoma ot N. ‘Yopxn, dvoiyuatos 854 m, mod
mpoTiMe dmd mTeovyioud (dorabels dplaxol ndxAot).

“Eva onpavtind mpbBinpa the ph ypappinie duvapinic dvarboews TGY xato-
oxevdy elvar 1) Suoyépela EmAdoems TV EvTovme Uwh) YeauLin®y Stapoptrdy EELeh-
GV KWNGEWS GE cuvduaopd pE Ty ouyve Cnrobuevy Ao 6 ueydha yeovika Sua-
othwata (mpdypa Tob dmipépel GUGCWPEVGY GPAALATOS 0F TEptTTWoN EQAPEOYNS
apBpmTindy pedbédwy % Emavedmmrinidy Teyvindv). Hoapd iy brapln onuepa Toyd-
TAT@Y HTONOYLGTEY %ol TOAD &moteheopaTin®y &plbunTindyv oynuatwy, 7 yevoL-
pomotnen xol IV TEXVIXEY (T.y.) TpoceyYleTIX®Y dvahuTindy wueBodwy % wpr-
plwv ToloTxdig 7 mosoTic PlcEwe, wptveTar dmorbTme EmBeAnuévy dxnbduy xal
YLo Y] YPoQpIXd Suvauind cueTHpaTE TELdY 1) Teccdpwy Babudy Ehevbeplag -
VoEWG.

Squavtied Phpata medg Ty xatebBuvey adty Eyovpe Teheutain YAplG GTNY
np60do Tig motoTiNis TomoAoyixijs meoaeyyicems ut THY 6ol EmTVYYAVETHL ) 0N~
wavTind] pelwon Tijc daotdoews Tév Suvaprév custnudtey (3nhadh Tol dplfyed
&V Suanpopndy diiomoewy) GANL ol N pelwon Tob fabuod un yoauuxdTyTos, Y-
elg Vo Stxpedyer 1 ToloTiY, GuUTEPLPopd Tob Suvauixol cuaThpatos. AdaTyees pa-
Onuatingg Teyvinds émdve o adty T Oedpnomn elvar, éxtog Tig mahuds TEYVLX]S
@y Lyapunoy - Schmidt, % Oewolo Tod xevroixod molramrod (center manifold
theory), % wébodog Tév xavovixd@y uoopdy (normal forms) xal to Afjuua daywor-
ouo? (splitting lemma) ot Ozwpio T@v xaTAcTEOPGHY.

Snuavtied ouwPorn medg T xatedBuver adth yik Suvapixd Sownd cLGTH-
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poto pé eptoodtepes T@v Ovo EAevbeoudy xwrjoems Vo alpvidioe EmBadidpevy
pbption, SumoTdvel xavel otig mpoavagepleioes EpcuvnTinds Epyactes Tob ouy-
yoapéwe. Zuyxexpipéva otic On’ dpbu. [1, 8, 26] épyacties dvantiooeton wid &mo-
Teheopatiny TEXVIXY EMAVGEWS WY YPALUIXGY TEoBANUATOY GUVOPLAXEY Xl &EYL-
»&v Tpdv. Bric O dpbp. [2, 3, 4, 5, 6, 12, 13, 18, 21, 22, 30, 32] &pyasies, dmov
dtdetor ut moroTixd) dvdhven 7 EENynem Tol pyyavicuol dvwauxod Avyiouod pi
Bdon xal 10 Ocdpnua Tl xevrpol molhamiol (edotalic xal &otabéc moamid
onueto oélag), dmodetwvdetar étu xataoxevds mob clvar oTatixd edoralel umoper
*&Te and dpropéves ouvBiixeg va xataoToly dvvamxa Gotabeis (téoo oty mepi-
TTWGY GUYTNENTIXTG, 600 %al wy cuvTHENTIXiE @opTicewg). Tuumepaopatinds 6 u)
yoappxdg Suvainds Ayopds popéwy ut moAhods Babuode Erevbeplag xivijoeweg Hmd
alovidie @épTion [Sid Tol omolov émexteivetar 7 yvworh EpsuvnTind Epyacia yud
povoPaduia cuethuata TaV Saxexpipévav Epsuvntdy Budiansky and Hutchinson
[Budiansky (1967)], amotedel quufoli) 1ol cuyypagéwe otdv Sicbviy Emamuovind
16p0. ALiler Emiong vo dvapepbel 7 cupBold oty éEAymen Tol Suvapinol Avyi-
ouol xal g Suvapixic dnmhetag edotabelag uy ovvTnonTIKGY SuoTHdTWY THY
Tonwy «dmoxhicewe» xal «mrepuytowodn [7, 9-11, 14-17, 19, 23-25, 29, 31]. T’ ad-
g Tig Epyaoies éxtifevrar moAMa véx edpfuata Opiouéva TV dmolwy dvatpémouy
TponyoLpeva edpéwg dmodexta dmotehéopata. Xootixd xal petevotdberag pawvé-
peve, @awdpeva edaclinolag ot dmboBeon %) dpyixds ouvbixeg mobd Epgavilovrar
7660 6& Wi oLVTNENTIXY, 660 xal cuvTnENTixe dowixa cusTuate Extifevral otic
o &pbu. [7, 9, 10, 15-20, 22-25, 27-29] épyacies. Tha ™ perétn 8hwv T&Y dvem-
o gawopévev 6 cuyypapéag Expnoipomoince G¢ mposopoldpata TV TebBolro
xol TV GmhY dpgLépetatn Soxd.

‘H mapovon épyasia, dmotehodon éméxtacy @Y ndpa v 32 époyacidy, Sa-
TpaypaTedETAL TOV Wh Yoapuind duvauikd Avyiowd xal T Suvauxd dotdbeia p)
ouvTNENTIK@Y Stodadikd@y Wi yeaupwixds EhacTixdy pé % ywpls dnbofeay Soui-
%GV GLOTYUATWY, dToxewévey ot pbptioy ustaBadhbuevng Sievbivoews. ME pup-
poyd) Wi yevirdic Bewonrinijs dvaiboews e mowoTixa xal mocoTina xoLTijoa Y-
GLLOTIOLOVTAG (O TiposopoiwLa Evar AmAd TpbBoko dmoxahdnTeTan i GA6xAnEY GeLpd
Sdvvapuxdy draxdaddoewy. T mpdhtn popa edplonetar 6t ot meproy) dmdplews yer-
Tovxdy icoggomdy (6mov elvar Epapudorues ol oratinds pébodor) clvan Suvary 7
SuaxAdSwor o6& dolaxods edotalbeis xxAovs yix poptio wixpdtepo Tol oTaTIXOY Au-
yropol. To mapamdve Qovépeve, xaboe Eriong onuetaxol 7 Gpraxéy wbxdwy &A-
#Teg, oL cuvdéovtan pé Qavdueve dxavévicTne (yuoTiric) xwisews, 1 6mota Staxp-

»el éviote éml poaxpdy, Eupavilovrar 68 pud wixpd meployd 6T YelTovix Tob Guvh-
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pov petald oTatixiic xal Suvapixic dotdleiag. Xapaxtnpiotind e meptoyfic adtic
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Fig3. Ziegler’s dissipative model under partial follower load.
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Fig4. The small region of adjacent equilibria (4/9<n<0.5) in the neighborho-
od of the point 0, where a double zero eigenvalue is possible for a

suitable damping ratio b.
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ELASTIC MATERIAL
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1% branching point
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Fig5. One postbuckling equilibrium path (passing through the 1% and 2"
branching point) for n=0.48¢[4/9,0.5].
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STABLE LIMIT CYCLES
24 (DOUBLE ZERO EIGENVALUE)
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Fig8. Stable limit cycle associated with a double zero eigenvalue for
n=045, 2=180, b =02, b =0.1.
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Fig.10. Asymptotically stable origin for the data of Fig.9 with A=1.90<2.
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STABLE LIMIT

passing through
=h,= 0.01.

Global stable dynamic bifurcation with trajectories
the saddle of the origin for n=0.48, )\=2.01>)\q=2‘007, b,

Fig.11.
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