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MHXANIKH. — On the Convergence of Series Related to Principal
Modes of Nonlinear Systems?®, ¢y Demetrios G. Magiros**. ~Ave-
wotvaddm Umo 1o TAxadnuainod x. ‘Iwdvv. Eavddun.

1. INTRODUCTION

a. In previous papers [*], where the principal modes of a «dual mode”
nonlinear system have been discussed, the solution is found in the form
of series. The object of the present announcement is to give a brief discus-
sion of the convergence of these series. Details of the discussion will ap-
pear in a forthcoming paper. The convergence is based on the «Abel’s

test» of convergence.
b. We state for reference that the solution found is the following series:
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The values w which are either submultiples of w, or zeros of the k’s

are the sigularities of this solution.

2. THE CONVERGENCE OF THE SERIES
The convergence of the series (1)is deduced from that of the series

Z aN' The proof of convergence of Z aN can be done in two steps, na-
N N

mely by using either the first term of the series (2¢) (first step), or all its
terms (second step).

The formula (2d), for large values of N , shows that |ky| is of order
N*and that the sign of ky is negative. Then a value N, of N can be found

such that ky remains negative for any N)N, and |ky | increases with N.
Furst Step
By taking the integers N, n, n, o such that N=2n)N,, n==n-Fo0, whe-

re N,, N, n are fixed, the coefficients a can be written as:
N

e =C, (- 1 T
N=2n 2, ky(n 1) ky(5+0)
(3)
a —C . @Blan) . ————
N=2n+1 2n+1 ko(n-+1)+1"* ky(nto0)+1

Where C,n and Cyat1 are constants, and the k's positive. The series

2 a can be split as follows:
N
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By mmposing the restriction 2, (ga—.; ' the Abel’s test for the conver-
> 1

gence [2D] of the infinite series of the right-hand member of (4) can be

applied, since:

0

. . a .
(a) the geometrical series 3 (34,a,") is convergent, and
o=1

(b) the sequences of the products of the inverse of k’s are mono-

tonic decreasing and bounded sequences.
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Second Step

The coefficients a in this case can be expressed as follows:
N
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Then the series EN: aN can be written as:
Ya=22 Az [lon + 2 Acnt1 [len+1 (6)
N N N=2n N=gn+1
where A’s are the factors of the right--hand members of (5) outside the
brackets, and II's the products of the brackets, namely:
N
Ghyfas? | (Bhifay[?y?
U[l" ey e —}
which for r either even or odd is either n2n or ”2n+1, respecti-
vely.
The series ZA?n and ZAn+l are convergent, according to the pre-
ceding step. In addition the II’s of (6) are sequences with monotone and

N

bounded terms, because n can be wiritten as:
r
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where [ is a finite fixed number, and [ is convergent as
r N=N1

. w 2
N—w , since the series Y (fhﬁ‘f )2 is convergent. [2°]
r=N1 '

The above proves that the series (1a) is convergent. For the proof of
the convergence of the series (Ib), we see that the Abel’s test of conver-
gence can be applied to the series.
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X
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The nature of the singularities of the series (1) and some subjects re-

lated to these singularities will be discussed in another paper.
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ASTPOAYNAMIKH.- On the convergence of the solution of a special
two - body problem* &y Demetrios G. Magiros (*) Avexolvddn

oo 1o CAxadnpainod x. ‘Iodvy. Eavddxn.
1. INTRODUCTION

a. In previous papers [' | where the motion of a projectile a Newto-
nian center during the action of general thrust vector was investigated, a
series solution for this problem was constructed. The purpose of the pre-
sent note is to give a brief discussion of the determination of the time in-
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terval for which the solution found is valid. Details of the present note

and related subjects will appear elsewhere.
b. We state for reference that the differential equation and the ini-

tial conditions of the problem in vector form are:

o 10+ T

1()=—
(1)

rlo)=r, r @=1+15L |
valid in the region D: | r(t)|( M, | r (x) [{ M, for any value of i-
me vin D;: o< v<1t". p is a constant, T the thrust, Lo the impulse of
the thrust for very small time, * and r the displacement and velocity ve-

ctors.
. d * * T* .
If the reference coordinate system is: (P; r, , s, , T, ), where P is
* *

the position of the projectile when the thrust starts, r,, s,, T, the unit

vectors along r,, io —f—lo, I,, respectively, a solution of the form
t() =1 + a)s) + o @)T] )
can be determined by calculating the scalar functions ai (1),1 =123, in

Mac Laurin's expansions at v = o.

N (n)
m(r)zzﬂr‘gtn i=1,238 (3)

The functions «i (1) satisfy the conditions

o+ Sa =T ;i=1,23

o, (0) =r1,,0,(0) = 05 (0) =0 (4)
a, (0) = a5 (0) = 0, a, (0) = s,
where s, = ! r, 4+ I, ' and T,, T,, Ty, projections of T on the r*,
& TY - axis. By using (1), (2), (4) we can determine the coefficients of

the series (3).
2. THE RADIUS OF CONVERGENCE OF THE SERIES (3).

The radius of convergence of the series (3) is the reciprocal of the

upper limit: @

1im§ oo}l S/ Li=123 (5)
n—» o
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The n'™ derivative of «; (r), found from the equation (4), is:

. (n—2) (n-2)
oM (1) = — [ o "’} T )

i r¥(v)

The general term ( ai“’ (x) /' n/ ), if we rake into account the for-

mula (e) of the Appendix, becomes:

(n) n—2 (m) n—m—3 n—m-4 ] (n—2)
ai (1) _ Z oi (r)[ V,r + V,r + -+ Vo—m—2 + Ti (v) (7)
W il (n—1)n m/ (n—m—2)/ rn—m-1 n/

where V’s are polynomicals in the derivatives of r up to the order
(n—m—2) with coefficients smaller than (n—m)!

To find the limit of the n' root of the absolute value of the right-
hand member of (7) for t=o0 as n—>, we consider each term of it as po-
sitive, and then take the n'® root of each such term. Their sum Sn must

satisfy the relation:
(n) 1|n
{Iai (o)]/n/] < Sn (8)
Since 1, F o and all derivatives of r and Ti are bounded at t=o, the
sum Sn —> O as n—> o, then the limit of the left- hand member of (8) is
zero, and, as a result, the radius of convergence is « , and the series (3)

converge for any value of t’.

APPENDIX :

The n®® derivative of the product of the functions o(r), @(t) is given

by:
) : L ) @(n—m)
lowl®=" Esra-m o o " (a)
m=0
and that of: o(t) = r,,lm (b)
P

by: ™ =Tn(_%‘ (c)
with: P(r)=V,r" 14 V,r" 2+ ... 4V, (d)

where the V’s are polynomials in the derivatives of r up to the or-
der n with coefficients smaller than (n-2)!
Combining (a), (b), (c) we can get:

n

[o/2]W= 3 2 __ sm PE (e)

_— m/ (n—m)/ rn—m+3
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where:
P(r)zvirn——m——1 + V2 rn—m~2 + Vn—m (f)
The V’s polynomials have coefficients smaller than (n—m-2)!
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