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1. INTRODUCTION

The structural method developed previously [1-4] for the solution
of the linear Boltzmann equation was based on the assumption that the
scattering kernel was degenerate. This was necessary because the con-
stant coefficients {pn, qn} were determined by separating sums having
as common factor one part of the factorized scattering kernel. Since the
scattering kernels of practical interest consist of several different terms
one difficulty arising from this fact was the relatively high order of the
appearing matrices. This must be avoided for several practical reasons
one of which is pushing further the accuracy of the numerical calcula-
tions without going into double precision.

Another more serious reason is the energy dependence as well as
the space dependence of the scattering kernel in the case of the dyna-
mics equations of the reactor, a case in which no discussion about dege-
neracy can be made.
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whilst for z=0 they are equal to

(x—a)'

n!

Sullx—a;0) = - (2. 3)

where o =a, b are the boundaries of the slab.

From Eq. (2.1) it is also seen that {Sn} are homogeneous of
degree n, i.e.,
Su(A(x—a), Az) = A" Su(x—aq, 2). (2. 4)

Another important property of S,(x —a, z) is expressed by the relation
xSy (x — @, z) = Sa—1 (x —a, 2). (2. 5)

The most important property of these polynomials is that when
they are acted on by the operator zd, 4 1 they are transformed into an
z - independent expression, i.e.,

(z0x +1) Sa(x —a, z) = ——. (2. 6)
This is a property valid in spaces of any number of dimensions. The
polynomials S,(x—a,z) are not orthogonal or normalized. In order,
however, to develop the method sketched in the introduction we need
{on} to be orthonormal. We use the Schmidt orthogonalization proce-
dure, and we obtain the orthonormal set of polynomials.

Using the definition given in Eq. (2. 1) we have for the n-th poly-
nomial the set of equations

oa(x—a), 2) = "g)cm, oy(x—a, z) + con Sn (x —a, 2),

(2. 7)
(Gn, 0y) = Cuy + Can (Su(x —a, 2), ov(x —a, z))
and
(on, 0n) = Elcfn + 2nilcnv Chiny (Sn (x—a, z), ov(x—a, z)) -+ ©.8)
v=0 v=0 2. 8
+ e (s, (x—a, z), Sulx—a, z)) = 1
where
(on, ov) =fdx fdz on (x —a, z) oy (x —a, 2z). 2. 9)
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From Egs. (2.7) and (2.8) one finds immediately

Cnv = — Cnn (Sn (X—-a, Z)’ O (X'—"a, Z))
and

con = = [(Sn, Su) —:’g:(sn, o]

and consequently
Cnv = (Sn, 06v) [ can.

Explicitly, we have the expressions

Bo, 8u) = £ ¥ (—P

[ e (b | 2 a) ]m+n——p—v+1

(2. 10)

2.11)

(2.12)

V=0 =0 (m4v—p—v+1) (m—p)! (a—v)! (n4v+1)

where ¢ =1 or —1 corresponding to a=a or b.

» (2.13)

The orthonormal set of polynomials {on} is therefore given by

the expression

n—1v—I1 1
On(x—a,z) =3 3 ... % CovCwu...CaoCe Solx—a, z) +
V=0 p=0 =0
a=—l‘v—1 2
+3 3.3 o Ot Silx—a,z) +
v=0 u=0 0=0
L

n-1

—+ 3 cavew Svix — @, 2z) + con Sa(x —a, 2z)
v=0

= % oy Sui(x —a; 2):
v=0

The first few polynomials {o.,} expressed entirely in

polynomials {Sn} have the form
6o = Cgo Sg,
01 = €199 + c11 Sy,
03 = (C20 + Ca1 C10) So + Ca1 €11 S1 + Ca2 Sa,s

L (2. 14)

terms of the

03 = (Cgo =+ €31 C10 + Ca2 Cop - C32 Coy C10) S1 + (ca1 o1 + Ca2 €21 €11) Sy +

~+ Ca2 Coa Sp - C33 S,

03 = (C0 + Ca1 C10) -+ Ca2 (a0 + C21 C10) ~+ cy3 (cap 4 ca1 €10 + C32 o0 +

~+ c32 €1 C10) So + (Car €11 4 a2 €51 C11 + Caz €31 € 4

—+ Ca C32 Co1 C11) S1 + (Caa Coz + Cyg Ca2 Coo) Sg +
—+ Cas C33 S5 + Cas Sy
4

= 3 uwy Sy, etc.
v=0

(2. 15)
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In the above equations Sy is meant normalized, i.e., Sy=[2(b~—a)] 2,

o) =

while all other polynomials are given unnomalized.

It follows from Eq. (2.14) that the new polynomials {0,,} satisfy,
of course, also the relations

(z0x 4+ 1) 0w (x — @, z) = g(x —a) = function of x—a only (2 16)

and consequently they conserve this important property of the polyno-
mials S, (x —a, z). '

However, it is easily seen that complicated boundary conditions
can be satisfied only, if we associate each polynomial with the cor-
— a

responding exponential function (— z)“exp[—— - } We define, there-

fore, our new orthonormalized functions by the new expression

- g g
Ou(x—a,2) = F Cav Oy + Con fn (x—ua, z),

v (2.17)
fit(x-a, z) =S, — (—z)“exp(—- - _a).

z

Clearly, the Egs. (2.7) - (2.12) and (2.13) - (2. 16) remain formally
unaltered but the numerical values of the functions differ from those
of {on}. In particular the values of the coefficients {E,,y} are not the
same with lcnv}. The main thing is, of course, that we have the relations

(0n, 0v) = duv. (2.18)

3. FORMULATION OF THE SOLUTION IN TERMS OF En

The advantage of using the normalized functions o, instead of
{fﬁt(x——a, z)} consists in the possibility of developing the scattering
kernel in a series in terms of {on}.

In order to find the correct expression of the solution of Eq. (1. 4)
in terms of the new functions it is useful to observe that the new solu-
tion is obtained from the old one by means of a kind of similarity
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transformation. To see this we write the solution for a critical system
in the form

b, (x,2) = 3 fa(x—a,z2) g5 2>0 (3.1)
n=0
or in vector form
v, = FtQ, (3.2)
where
AR S S (3. 3)
and
F )
0= (3. 4)
q,

and with the similar expression for y_ valid
Vo= F- P (3. 1a)

Eq. (3.2) can then be transformed by an appropriate matrix, U, in the
following manner

v,=Fuu'og=F'0Q (3. 5)
with

Fr=rF'u, @=U"0. (3. 6)

We identify now the components of the row vector F* with the ordered

functions o, i.e.,
Fr={o,01,...00...} (3.7)

and Q is a column vector having as components a new set of constant
coefficients.

It is easily verified that the matrix U is defined by the relations

0; k>1
= ua; k<1, 8.8)

where {ukl} are the coefficients defined in Eq. (2. 14).
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T'o proceed further it is necessary to make clear that the functions
{60 (x —a, z)} and {c—;_n (x —b,z)} are mutually orthogonal, since
zunvsn(x—ayz); Z>O}
v=0
-l 0; z2<0
on (x —a, z)={ (3. 9)
O 7 500

n a=b.
S Uny Su(x—Db, z); Z<0}
v=0

Consequently, the full range expansion of the scattering kernel takes
into account both sets of functions and Eq. (1. 1) becomes
(&) — =
Kilz, 2% %, %) = 3 knmallzyz)imieeinzi); (3.10)
n==0

— v deiiie —u B + Gole— b 9

V2

and the solution has the form

V

\P_,.(X,Z) == §U—n(x—aa Z) an; z 0
n=0

and (3. 10a)

V_(x,2) = 3 on(x—b,2) q,; z<0.

n=0

Accordingly, we write Eq. (1.3) in the form

3 (204 1) oalx—a, 7) @, =
‘e, - = S (3.11)
= A3 kalou(x—a,z) + ou(x—b,2)] (a,+p,) /2

0

3
I

By using the properties of the functions fi(x—a, z) one easily verifies
that

v

(@0t 1) 7 = (2 D)oy = iu‘;’e(—x:—,“l; (n=0,1,...). (3.12)
v=0 :
Writing Eq. (3.11) both for a«=a and a=b and comparing the l.h.
sides we deduce the relation

oS n x_aV_ hg
$supli=d g g 5.0 by

n=0 v=0 i n=0 v=0 v!

(3.13)
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From Egq. (3.13) it follows that
P (3. 14)

To prove this relation we use the homogeneity and the symmetry of
the system.

At points symmetric with respect to the middle plane of the slab
x and a-+b—x the distribution functions for z and for —Z must
be equal, i.e.,

Solx—2a,94, = Salatb—x—b, —lz])p, =

=0

s 2 " (3. 15)
= 3 ul—(x—a), —lz) b,
Recalling the definition, Eq. (2. 14), we find that
on{— fe=a), —lal} _Eou(b)f (—(x—a), —lzl). (3.16)
From Eq. (2.4) it follows that
o (—(x—a), —lz]) = = (—)" uld £ (x—a), l21). (3.17)

Inserting the above results into Eq. (3. 15) we deduce the relation
um = (—)" uly. (3. 18)

Upon taking the k-th order derivative with respect to x of both sides
of Eq. (3.13) and putting x=a and x=0b the following equations
are obtained:

S . m=- _ & @ (b _a)
ngkunu qn T nzk ng = (V 3 U) t pn (3 19)
and
& (b u® _(b_— a)’ " -
nzku ngk ‘gk ny (V =l u) ‘ qn < (3 20)

These equations are compatible only if Eq. (3. 14) holds true. Hence,
Eq. (3.11) can now be written in the simpler form

2 (x—af- _ @ (- - -

g = By ?\an[cn(x—a,z)-{-on(x—b,z)]pn.(3.21)

n={

ﬂ M8
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We next multiply both sides of this equation by on (x —a, z) or
on (x —Db, z), and we integrate over 1 >z>0 or 0>z >—1 respectively
and also over a<{ x< b and we get the equation

S (Ruw —Aun)p, = 0; (0°=0,1,...), (3. 22)

n=(

where

v!

n b 1 o v -
Ruw =3 !‘{—gx—ﬂ Uny 0’ (x —a, z) dx dz. (3. 23)

Eq. (3. 22) represents an eigenvalue problem from which both the eigen-
values {l;} and the eigenvectors {Eg)} can be determined.
It is easy to see that the integrations in Eq. (3.23) can be carried

out analytically, and they lead to the expressions

(b—a)* "

gt @ @ | & e =
R = B B tie | 2 o i T W )

n

S P E (b— o) B b — a)A — vt

A=0

4. THE ENERGY -DEPENDENT PROBLEM

We consider the energy dependent Boltzmann equation with aniso-
tropic and energy dependent cross sections 3s(E,z), ¢ (E) and = (E),
where z = cos? the scattering cosine. This equation in plane geometry
has the form

[20x 4+ = (B)] v (x, B, 2) =

b E2 1
= [ax' [ [S.(B, 2) R(E, 2'; B,2) w(x, B, 2) de’ dE.  (4.1)
a i1 —
The distribution function can be written again in the form of Eq. (3. 10a)
with the only difference that the argument of the functions {;n} will
now be space and energy dependent.
The form of dependence is chosen such that account is taken both
of the homogeneity of the functions {fni (x —a, z)} and of the structure
of the 1. h. side of the Boltzmann equation, i.e., we have

—a
fi _)—(7" zt(E)_
n

(x—a,z, E) = Sa((x—0a): Z(E), z) — (—2)"e (4.2)
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This definition has the advantage to give a very simple result, when
: ; + ..

(zdx—}—Et(E)) is applied on {7 (x—a,z, E). This is

(x —a)°

(2054 5 (B)) fr = [Z(B)N'——~. (4. 3)
To exploit this property we write the function o,(x—a, z, E) in the
form o, ((x —a) 3 (E), z) and define

£ (x—a, z, B) = £ ((x —a) S (B), 2). (4. 4)

Due to Eq. (4.4) the orthogonalization of the functions {En} can be
done even in the case of the energy dependence in the same way as in
Egs. (2.17), (2. 18).

We have

on ((x—a) S (E), z) =:§)€mgy ((x—a)Zi(E), z) +
> E—ntl(]-:‘:) ‘ Sn((x—a) 2. (E), Z)-

(4. 5)

It is comfortable to extend this definition now to all coefficients c~nv, ie.,
_C_nv e —C—nv (E) (4 6)

Due to the structure of the energy dependence of the functions it is
advisable to define the orthogonalization in the following manner :

1 B
(0n, ow) = [dz [ou((x —a), 2) 0w ((x —a), 2) dx = B (4.7)

where now x = x - 3(E) etc.

From the above considerations, Egs. (4. 6), (4.7), it follows that
the coefficients {uf,av)} become now energy dependent and in fact this
energy dependence follows from Egs. (2.11) and (2.12) in which, of
course, the polynomials {Sn} are replaced by the functions {fi} as
defined in Eq. (4.4). It is useful to observe that the coefficients
{;,w (E)} depend on the energy only through 3 (E). For example

1
= L I = 3]
coo(E) = [2(b—a) +- 2Eg(b—a) — 5 B (2(b—a)) — (4.8)
and

e (B) = [(&F, £ — (£, o)’] *. (4.9)
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In this way the orthogonalization procedure does not involve integra-
tions with respect to the energy, therefore,

£, ) fdzfdxf+f+

Since,
5 ((x—a) %, 2) = 3 ul(B) £ ((x— o) % (B), 2), (4. 10)

it follows that -

(20, +508)] 7 = 3 ulm) E= Dy, (4.11)
Upon writing .

V(0 2, B) = $o.(x—a,2) 0,5 (230). (4.12)
"

V_(x,z,E) = Zon(x—b,z)-p ; (2<K0). (4.13)

for the solution (x,z, E), it follows from Eqgs. (4.1) and (4.12) - (4.13)
that

Z Z 0 (B )(X—T)—[Z(E)]vq—n=
n=0 v=0 " (4. 14)

= 1 3 ko [on (x—2) %i(B), 2) + o ((x—b) % (), 2)] g,

where

leg —fszfdhfdzfdz fdxfd‘( K(x, x5 2,2) (X, 2z) (X, z’). (4.15)

In order to obtain the spectral equation for the determination of the
eigenvalues {?\} and the eigenvectors {an} we multiply both sides of
Eq. (4. 14) by on (x—a, z) and we integrate over [a, g] and [E,;, B,
[—1,1] and obtain the equations

S Row —Aka)q, =05 n'=0,1,2, ..., (4. 16)
n=0

where

b - 1
-5 de o E)fdi{ii;fif&n,(;—a‘,z)dz. (4.17)

v= =
0 1 a =1\
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It is noticed that the integrations over —1 <z <1 and over
£< x <B can be made analytically and only the subsequent integra-
tion over E;<C E < E, need to be done by computer, this fact makes
the present procedure advantageous with respect to other known
methods for solving the energy dependent linear Boltzmann equation.

5. THE BOUNDARY CONDITIONS

We wish now to show that the completely determined solutions as
given by Egs. (4. 12) and (4. 13) satisfy indeed the appropriate physically
prescribed boundary conditions.

Since the system considered is the critical one (Fig. 1) in the

)ﬁ

Zz = cos 9

Fig. 1. Plane geometry of a homogeneous system.

present situation the boundary conditions are as follows :

v, (a,2,E) =0; {vz€[0,1] AVEE [E,, Es]} (5.1)
and
y_(b,z,E) =0; {vz€[—1,0]AVEE[E,, B} (5. 2)

First let us show that Eq. (5. 1) is satisfied. This can be written
in the form

56.(0,2)q = 5 ’iou‘:v’(E) £ (0, 2). (5. 3)

n n=0 y=

From Egq. (4.4) we see that
f1(0,z, E) = £, (0, 2) (5. 4)
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or using the definition in Egq. (4. 2) we see that
170, z) = {(—2)"— (—2)" = 0. (5. 5)

Finally, from the comparison of Egs. (5. 3) and (5. 5) there follows
Eq. (5. 1).

In the same way we see that Eq. (5. 2) is also fulfilled.

Let us next suppose that an inhomogeneous Dirichlet condition is
imposed. For example we may assume that

v, (a, z, E) = v, (z, E) (5. 6)

v_(a,z, E) =0. (5. 7)

and

In this case one easily finds that

x—a

v, (x,2,E) = w,(z, e 2 + 3 ou(x—a,2)aq, (5. 8)
n=0
and
¥ (x,2,E) =S ax—b,2)p,. (5.9)

It is easily seen that indeed both Egs. (5.6) and (5.7) are satisfied.

TIEESPAIVA BH T 3

‘H uédodog tdv molvwvipwmy {Sn}, T Omolo. eiyov yonowomondij eig
Teomyovuévag goyactag, fpaouolovratl 8v mEOXEEV® VIO THY ROVOVIROTOMUEY NV
woovjv. ‘H yonowudtns tic woopiic avtilc mdewnvietal eig v meolntwoty tod
VTOAOYIGUOD GUVORTHOEMY ®aATAVOUTS VeToovimy, Gtav ai éveoyol Statopai &Eap-
t@vrar &x thg évepyslag. Tolto Bmrvyydvetow dua thc dvamtitewg Tig ovvaety-

oewg oxeddoswe &ig ospav T Pondele 1OV véwv dodoravovirdv cuvagriicemy.
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