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EOHPMOSMENA MAOHMATIKA.— On the linearization of nonlinear
models of the phenomena. First part: Linearization by exact
methods,by Demetrios G. Magiros *. >Avexorvddny vmo tod *Axadn-

uaizod %. ‘lo. Eavddxy.

ABSTRACT

This paper deals with remarks on the linearization methods of
nonlinear mathematical models of the phenomena.

We can classify the linear methods into two distinct types, the
«exact methods» and the «approximate methods».

The advantages and disadvantages of these methods are clarified
by appropriately selected examples.

1. INTRODUCTION

The phenomena, either physical or natural or social, are interre-
lated variations of certain variable quantities and their rate of change,
and their nature is usually discussed by mathematical models, where
dominant concepts are the linearities and nonlinearities of the models,
which usually are differential equations nonlinear in their variables
(NLDE).

By «linearization» of a NLDE we mean a reduction to a linear
differential equation (LDE), which is either «equivalent» or «almost
equivalent» to the NLDE, that is the solution of the LLDE may give the
solution of the NLLDE either «exactly» or «approximately» by an error
of small order.

The linearization is a tool for a simplified and easy discussion of
the nonlinear phenomena. This tool is helpful in a few cases, but in
many cases, especially of practical importance, the linearized models
leave out essential features of the NLDE, or they contain properties
which are not properties of the NLDE, when the linearization is not
acceptable for an adequate description of the real phenomena.

* AHMHTPIOY I. MATEIPOY, TIpappironoinolg wh yeopuwr®dy padnuatin®dy
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The aim of this paper is to provide a sketch of ideas and techni-
ques associated with the notion of linearization of NLDE and to exhibit
advandages and disadvantages of the linearization methods by using
examples of practical significance.

We distinguish two classes of linearization methods : the «exact
methods», and the «approximate methods».

The exact methods give exact solutions, essentially general solu-
tions in closed form, and the approximate methods give approximate
solutions within an accepted error.

In this part of the paper we deal with «exact methods».

2. LINEARIZATION BY EXACT METHODS

NLDE may be reduced to LDE by «exact transformations of the
variables». By this linearization we may obtain general solutions of the
NLDE in a «closed form», by using the solutions of the LDE and the
transformation formulae of the variables.

Also by exact linearizations, corresponding to some restrictions of
the variables or of the parameters, it is possible to find general solu-
tions of special cases of the original NLDE,

The following examples may be sufficient to show the essence and
the applicability of the exact linearization methods and their important
results.

In some of the examples use is made of appropriate transformations
of the variables, and in some other examples appropriate restrictions
of the variables or of the parameters.

Example 1. The Bernoulli equation :
v+ ay = by" (1)
where a and b are functions of x, and b==0, n=£0, s£1, is a monu-
mental example of exact linearization.
We change the variable y into a new variable z, keeping the same
independent variable x, by the transformation formula :
F =y =" ()
when the linear equation in z results :
z’ 4+ (l—n)az = (1—n)b (@2)
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By solving (1.2), then using (1.1), we can get the solution of (1)
in an exact and closed form.
In the specific example :

¥ = %Y = 4x?y'ls, x+£0

which is of Bernoulli type, the transformation z = y'/» leads to the I.LDE:

, i
2’ — —z = zx?
X

. . 1 . ; .
of which, by using u = - asan integrating factor, we find the general

solution : z = (cx + x®), when the general solution of the original NI,
equation is : y = (cx + x®)%

As we see, the single constant of integration enters the general
solution of (1) in a nonlinear way.

Example 2. The Ricatti equation :

vy =ay’+by +c 2)
where o, b, ¢ are functions of x, and a==0.
Liouville proved (1841) that this simple NLDE in its general form
can not be solved by elementary exact methods.
.(a): This equation can be linearized to a LLDE of second order.
Transforming (2) by

v(x
yx) = 2 2.1)
we get :
v'=v2—|—(%+b)v—|—uc 2.2)
which is NL in the new vrriable v. Now, transforming (2.2) by:
__ u(x)
vilz) = bl (2.3)
we get the LDE of second order in u(x) with variable coefficients:
u"—(%+b)u’+acu=0 (2.4)

ITAA 1976
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of which the solution can not, in general, be expressed in exact form in
term of a finite number of elementary functions.

.(b): We can linearize the Ricatti equation (2) by specific «res-
trictions», e.g. when we know a particular solution y;(x).

By the transformation :

vy (x) = ya1(x) + 2z (x) (2.5)
the equation (2) leads to the Bernoulli equation in z:
z’ — (b + 20y,) z = az® (2. 6)

which can be solved by linearization, and from its solution and the trans-
formation (2.5) we can get the general solution of (2).

Example 3. The NLDE :

— X+yZ

where X, Y, Z are homogeneous functions of x,y, the X, Y of degree u
of homogeneity, and Z of degree v, can be solved by an exact lineari-

zation. Transforming by :
y = Xz (3. 1)

and using the homogeneity property of X, Y, Z, equation (3) becomes :
dx :
= + A(z)x = Bfz)x" #+? (3.2)

which is of Bernoulli type. The functions A (z) and B(z) are known
functions, calculated in the process to find (3. 2).

Example 4. The Lagrange equation :

y =x0(y)+v(y) (4)

which is linear in x and y, but nonlinear in y’, can be solved by an
exact linearization.

Differentiating (4) with respect to x, putting y’ = p, then consi-
dering x as dependent variable and p as independent variable, we get:

(cp(p)~p)j—’;+xm'(p)+w'(p)=o (4.1)
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which is linear in x. If x = x(p) is the solution of (4.I), inserting

x = x(p) into (4), we have the function :
y = x(p) @ (p) + ¥ (p) (4.2)

which is the general solution of (4) in an exact closed form with p as a

parameter.

Examples 5. The NLDE: (a): f(y) =0, (b): £(”) =0, .
can be solved by an exact linearization.
y—c
%

.(a): If in (a) we put y’ = k, when y = kx4 ¢, that is k =

Y=g

then the general solution of (a) is: f( ) = 0, ¢ = parameter. E. g.

y—=e

4
the equation: (y’)* —1 =0 has ( ) — 1 =0 as general solution.

We have :
i PR e R WENPL 5 o PR Y e R
X i | x X be )
The first factor is not zero, the other factors may be zero, then
the general solution of this specific example is the couple of the two

families of lines: y=x-¢, and y = — x - c that is all lines in
the x, y — plane parallel to the first and second bisector.

: 2
2

(b): If in (b) we put y”’=k, when y=—}ix2+c]x+02, or
X2(y——c:1 x —Cy) then the general solution of (b) is:

o

2
f(?(y—-clx——cg)) = 0, ¢; and c,; parametrs.

Example 6. We may have a linearization of a complicated
NLDE by factorization, e.g., if the NLDE is factorized as:

(24 y241) vy (xPy""+ xy ‘—2xy" +2y) = 0 (6)
This equation is equivalent to the system :

@): y"=0, (b) : =By xPy"—2xy'+ 2y =0 (6.1)
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The first factor can not be zero. The second equation of (6.1) is
of Euler type. The solutions of (6.1) are :

(a): y=ax+te,, (b) : y = cax + cgx' 4 c5x* (6.2)

where ¢,,.., cs are parameters. Therefore the general solution of (6) is
given by both equations (6.2), and from each point of the x, y -plane
two solution curves of (6.2) pass, one from the family (6.2.a) and one
from the family (6.2.b).

We may have other cases of exact linearization of NLDE ®) @)

In the following two examples the exact linearization is of dif-
ferent nature:

Example 7. The problem of mechanics of the free rotation
of a rigid body with any «mass distribution» is governed by the Euler
system of NLDE :

I10.01 + (Is—I) 3w = 0
ILyow; + (I; — Iy) oym3 = 0 (7)
Liog+ (Is— ;) wgw; =0

where ;, wy, w; are the unknown angular velocity components, and
the parameters I, I, I3 are the moments of inertia of the given rigid
body about the body coordinate system with origin the mass center of
the body. We can linearize this nonlinear system, if we accept a «special
mass distribution», which corresponds to a «special restriction of the
parameters» I;, I,, Is. If the mass distribution of the rotating body is

such that the body has an axis of symmetry, say the w; -axis, then
I, =1;=1, and (7) leads to the linear coupled system:

('1)2. = C1 g, 0:)3 = — C; Wy (7. 1)
where : ¢; = o;(I—1;)/I = constant.

The above linearization, occurring by a restriction of the parame-
ters, corresponds to a physical problem, which is a special case of the
initial problem expressed by (7), and the solution of the linearized system
(7.1) is a special case of (7).
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Example 8 The «pure Keplerian motion» of a body of mass m
around a central body of mass M is due to the attractive Newtonian
force of the bodies, in the absence of perturbing forces. This motion is
governed by the NLDE in vector form :

x4+ —=x=0 (8)

where k = K(M 4 m) = constant, x = (x1, X, X3), 12= x>+ %+ x5%

In the following we see two types of exact linearizations of (8), one
by «regularization», and the other by «restriction of the variables» ©).

(a): Regularization of (8). We use an auxiliary equation,
and change the independent variable.

The equation (8) is «singular» with the origin as the singularity.

When the motion of m is close to M, it is a «near collision» motion,
when large gravitational forces appear and sharp bends of the orbit.

Such a phenomenon occurs when, e.g., an artificial space vehicle
is at its start or at its destination.

By appropriate transformation of (8), it is possible to get a regular
equation free ot singularities. This is called: «<«regularization». In the

one-dimension case, (8) becomes :
.. K2
X
and the energy function of the pure Keplerian motion is :

= 0= @ T 2
hk_x 2x (82)

where the energy hy is a negative constant.
If, in these equations, instead of the «natural time» t, the «arti-
ficial time» t is taken according to :

dt = xde (8.3)

the equations (8.1) and (8.2) become :
xx"”"—x?+4+k¥*x =0 (8. 4)
xt= 2(k’x J h:x% (8.5)

where t is the independent variable.
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Inserting now (8.5) into (8. 4) we have the LDE
x” 4+ 2hyx = k? (8. 6)
which is the «regularization» of (8).

(b): Restriction of the Variables in (8). By

restricting the variables x;, ¥,, x3 according to:
r? = %2 + x,? -+ x° = constant (8.7)
we linearize (8), when it reduces to the LDE
x4+ vx =0 (8.8)
2. The solution of (8.8) is:

x = acosvt + bsinvt (8.9)

with v = kr—

with a and b are constant vectors.
The restriction (8. 7) specializes the motion of m to be a motion on
the surface of the sphere (8.7), and, since the motion of m is only under

the influence of a central force, the motion of m is circular on a plane
2n 2%

through the origin with period of revolution: T = e —k—rﬂ/2 and
velocity
x = v(—c¢;sin vt 4 cycos vt) (8.10)
of magnitude :
U= vt = —k: = constant. (8.11)
Vr

By considering r of (8.7) as a parameter, the above linearization
gives various circular motions of m around M inside a sphere of radius

the maximum of the parameter r.

SUMMARY

The mathematical models of the phenomena are usually NLDE,
which is very difficult to be solved. Some classes of these equations can
be treated by special methods, among which are the linearization me-
thods, either exact or approximate.

In the exact linearization methods one may use appropriate trans-
formation of the variables, when one may have general solutions of the
NLDE in closed form, which is an ideal case.
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Also, one may use restrictions of the variables or of the parameters
of the NILDE, when one may have some special subclasses of the general
solutions of the NLLDE.

For a single NLDE one may have more than omne formula for its
general solution, and a NLLDE may have, in addition, singular solutions.

NEPIAHYIZ

Ta poaduarina povréha td@v dopéowy qawvopévoy eivar, cvvidog, un
yoauuxal diopoowkal EElowoelg, TV 6molwv 1 Adoig glval, &v yével, elte advva-
tov elte mohv dVonolov va e0pedf). Al ueQuxdg xotmyooldg TOV WY YOUUULXDY
gElodoemv duvavral vo épapnocdoiv eidixal uédodor, petald tdv omolwv eival
%ol 1) «yoapuixomoinoig», elte Grofng (exact) eite nata moooéyyowv (approxi-
mate). ITahaiéreon, 7 omovdn) @V Wi yoapux®dv EElcmoemy St yoauuxomou]j-
cews (Srayoapiic v w) yoauuxdv Gowv tdv EEcdoewy) Tto 1) deomdlovoa
uédodog, dimg eic moofiiuara épaouoydv. Ileo peouxdv dexastnoldwv fuwg dme-
delyOn 6t 1 yoauwromoinoig EEakeipet Pacixag Widtnrag t@v Adcewy t@v ui
yoauux®y EElodoewy xat Gtu ol w1 yoauutxol doot t@v E&icmocwy matlovv deomd-
Covra pdhov eig TNV €oeuvay TV QAUVOUEVMV.

Awt tiic magolong éoyaciag, Omwe xal did pids didng mov Vo Emaxolov-
Hijoy, Oldovral magarnerioels énl T@v pedodwy yoapunoromoews, xvplwg &xi g
ratardnrétnrog f un tiig yoauuromooems g nuedodov 0gUyng 1MV PALYOUEVOY.
Eidwdg, eic v magovoav oyaociav £Eerdlovron dxoifeic uédodor yoaupixo-
rofoews. Big avtag tac nedddove yiverar yofoig xatalllov ustacymuotiopndy
v perafintdv, O6méte eivar duvatov v Emrevydolv «yevival Adoeig» TtV ui)
yoopux®dv EEodoewy Um0 «xhelotv popopnv» (closed form), 10 6molov eivan
i0emdeg Emitevyua.

*Eniong, ue xatdiAnhov megrogiopov t@v uetafintdv ¥ t@v cuvreheotdv
v p) yoauuwdv gElocmoswy, eivar duvatov va émtevydolv yevixal Avcelg,
al O6motat slvar eWdwal meguutdoelg thg yevixiie Aoewg T@Y W yooumux®dv
gElomoemy.

Mia pn yoauuwnt 8Elomoig 8vdéyetal va €y meQLoootéoag THg ULAS YEVIXAG
Moeig, dnwg Enlong Evdéyetan va &y, éxl whéov, xal dvoudhovg (singular) Avoeic.
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X

‘O *Axadnuairog % "I Eavldung, magoveidlov v dvotéom avaxol-

4 \ Cou A~
voolv, gime ta EENG :

"Eyo mv riunv va avaxowwoon eig tiv “Axadnuiav oyaciav tod x. Anun-
tolov Mayeloov S tv yoauuxomoinowv w1 yoauutxdv Madnuatxdv ITootvmwy
1@v Dawvopdvov.

Qg yvwotov ta padnuoatine medtuma (woviéha) Stagpdomwv Quo®dY (alvo-
névav udg 6dnyodv cuvijdwg eig wn yoauuwag dtagooindg EElodoeic, v 6molwy
ai Moeig gival, xatd yevixdv xavéva, eite adivarolr eite moAv dvoxoho. Adyw
tiis dvoyeoeiag Tavng, uéyor b Tivay Etdv, dieyodpovro oi N yoouuixol Goot
@V Gvriotoiywv dragpooudv Eicmoeny idiwg eic mooPiinata mov dgewony pag-
noyds  GAha W yoaupiromoinoig v Siagooxdv EEtodoemv S tig uedddov tav-
™mg, hadn tiic diayoapiic tOV Ul yoauwrd®v Gowv, EEakeiper Paocuxag i9L6-
mrag tT@v Acewv tdv un yoauuxdv Siapoouwdy EElomoemy, didtL diayoapduevor
w1 yoapuxol dpot dradoapariCovv ¢ dmi 10 whelorov deomdlovra odhov eic v
gogvvay TV gawvouéveyv. Eig doouévag xatnyoolag un yoauuxdv diagooindv
gElowoewy duvavrar va Epaguoctolv eidixal pédodor, mov otnoilovrar elg yoau-
MAOTOTOINoLY %aTd TEOTOV AxQLBT] 1) ®aTd TEOGEYYLGLY.

Eig v magoloav avaxoivwotv 6 ». Mdyeipos doyoleitar ue axoiPeic ueds-
dovg yoaupxomonjoewg, tag 6molag Epaoudlel eig tag #Ewomoelc Bernouilli, Ri-

catti, xadmg xai elg diagdoovg dAhkac woogag diagoon®dv EElowoemy.




