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MA®HMATIKA.— Characteristic Properties of Linear and Nonlinear
Systems, by Demetrios G. Magiros *. ’*Avexowvddn Ond tob Axa-

Iuaizod x. *lo. Eavddxm.

INTRODUCTION

In two previous papers (published in: Practica of Athens Aca-
demy, June 1976; and as GE Reports: (a) 76SDRO26, 6/28/76; and
b) 7T6SDRO27, 7/1/76, we examined exact and approximate methods of
linearization of nonlinear systems.

In the present paper the main characteristic properties of linear
and nonlinear systems will be discussed. Some of these properties char-
acterize only the linear systems, and some others only the nonlinear
systems. Some properties of NLS disappear by its reduction to a LS,
and, therefore, the nature of the problem associated with the NLS,
accompanied by the knowledge of the properties of the systems, decide
whether the linearization of the NLS is permitted or not.

Nonlinear systems, that is phenomena whose behavior can be des-
cribed by models which are nonlinear differential equations (NLDE),
become increasingly important in many fields, as in astronomy, space
flight, automatic control, biology, economics.

Since by linearization of nonlinear systems important features of
the phenomena are neglected, it is necessary to know general features,
basic striking properties and characteristic peculiarities of linear and
nonlinear systems.

We discuss this subject here, and the discussion is illustrated by

simple examples.

I. THE PRINCIPLE OF SUPERPOSITION

This principle, first stated by D. Bernoulli (1775) and used by Fou-
rier (1822) in his theorem, holds in linear systems (LS) and characterizes
them, but in general, does not hold in nonlinear systems (NLS).

* A, . MATEIPOY, Xapoutnpiotivai ‘ISétnres Tpoppuedy xal ph Tpoppt-
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This principle consists of two properties :

(a): The sum of any number of linearly independent particular
solutions of a DE is also a solution of the DE ; and

(b) : Any constant multiple of a solution is also a solution.

In homogeneous LS the above principle holds and it characterizes
completely these systems. By using this principle, one can obtain the
general solution of these systems as a linear combination of some easy

to get special solutions, the fundamental set of solutions.

In nonhomogeneous LS:
X = Ax; + hi(t) (1)

where A is a (n X n) matrix and h;(t) a «forcing function» or «input»,
the above principle means that: if x; is a solution of system (1) with
input hy, and x, another solution with input hs, then c¢; x; -+ cax, is solu-
tion of (1) with input: ¢; h; +csh,. The ¢; and ¢, are arbitrary constants.
® In NLS the principle of superposition does not hold, and, then,
its general solution, if it exists, can not be formulated in the simple
way as in L.S.
There are NLLDE where only the property (b) of the above holds,
but not the property (a). For example, for the equation :

y24yy' +y?=0 (1.1)
ot which the terms have the same degree (two) in y, y’, vy we see that:
(i) : If y;andysare «linearly independent» solutions, then y=y; 4y

is not a solution, but y =c;y; and y = ¢y, are solutions ;

(i1): If y; and y, are «Linearly dependent» solutions, that is
ys = Cy;, then this equation has y =y; + y, as a solution.

II. THE GLOBAIL PROPERTY

The global (or predictability, or provincial) property characterizes
the LS, but not the NLS.

® In LS the local behavior of the solutions implies their global behav-
ior. That is, the global behavior can be predicted from the local behav-
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ior, then the LS, which may be defined for all values of time, are by
nature «provincial»,

e In NLS this property does not hold, the global behavior of NLS
can not be implied from their local behavior, that is, the «unpredicta-
bility» characterizes the NLS. In NLS it may not be possible to extend
the solutions beyond a certain time, or these solutions need not be defined
for all values of time.

The linearization of a NLS may help to get local properties of NLS.
By the following simple example the above are clarified. [4]
Let us take a LS and a NLS :

(a): x=—x, X(0) =y ; (b): x=—x-+ex? x(0)=x (2

where & is a parameter. Their solutions are, respectively :

b wthmaget; o o inwill =g o &1

graphically shown in Figure 1.
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Fig. 1.
The equilibrium point of (2.a) is x =0, and of (2.b) x =0, x = %
For both systems (2), x =0 is «asymptotically stable», but x = —1—

is «unstable».

The solution (2. 1b) for x > —i— becomes infinite for the finite time:

- €Xg
t; = log —_—EXD = (2. 2)

In Figure (1.b) we distinguish three regions: I, II, I1II
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In region I (O <, x< %) all solutions have the t-axis as an
asymptote;
In region II (0<t<t1, x > %) the solutions become unbounded

for the finite time t;; and

In region III (tl 5 x> %) there are no solutions.

We see that :

(i) : In region I and close to origin, the solutions (2.1.b) have the
same topological behavior as in the linear case (2. 1.a), which means that
the linearization of (2.b) in the region I gives useful information, and
the local behavior of the solutions of both system (2) in I implies their
global behavior.

(ii) : In region II, the nonlinear term ex? causes the existence of a
new phenomenon, and the linearization makes this phenomenon disappear.

. . 1
From the local behavior of the solutions close to x = i one can

not predict the future behavior.

As ¢—> 0, the line x = % and the regions II, III tend to disap-

pear at infinity, and the NLS tends to become a LS.

By the above example it becomes clear that in NLS the lineariza-
tion has limitations, and, in general, the future behavior cannot be
predicted.

IIr. LIMIT CYCLES

Limit cycles may be a phenomenon of NLS, but never a phenome-
non of LS. Periodic phenomena of LS or NLS correspond to closed
trajectories, called «cycles»> with a period or frequency a finite number.

The cycles may constitute a «continuum spectrum», but may be
isolated cycles, called «limit cycles», when in a neighborhood of them no
other cycles exist.

The limit cycles must not be confused with some nonperiodic closed
trajectories, which are members of a special class of solution-curves
of systems, the «separatrices».
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If, in a LS, a periodic solution y exists, then, due to the principle
of superposition, which holds in LS, cy must be also a periodic solution,
and since ¢ is an arbitrary constant, no limit cycles exist in LS.

In some NLS, due to the special nature of their nonlinearities,
limit cycles may exist, and for each NLDE the problems of existence of
one or several limit cycles, their uniqueness and stability, as well as
the construction of their boundaries and the calculation of their periods
are important and, in general, difficult problems.

Stable limit cycles correspond to important physical phenomena,

as, for example, to self-excited oscillations.

Example 1. The system: [8]

. X ]
o= —_— ] — (x2 “
w4 e 1= (4 9%) ! a
F=—x e ] —(x? 2
y= ot gy (1=} |

has the unit circumference x*-4 y>=1 as a «stable limit cycle». Indeed
transforming (3) into polar coordinates and using: xx - yif = rx;,
we have:

r= 11— 6=1 (3. 1)
of which the solution is:

ce?—1
r—m, e—-—t—{—Cl (32)

141,

g
condition. If ry <1, then, as t—> o, r—>1 from inside. If ry> 1,
then, as t—> o, also r—>1 but from outside, when x>+ y2=1 is a
«stable limit cycle» of (3).

where ¢ = and c; are the integration constants, r, the initial

Example 2. The system:

x=—y+x(x*+y:—1)
y= x+yEi+y—1)

has the unit circumference x®*+4 y®*=1 as an «unstable limit cycle».

(3. 3)

This system, in polar coordinates, is written in the form :

r=r(t—1), 6=—1 (3. 4)
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with a solution :

1
r — TV] -(;T?‘, e=t+C] (35)
&
4 and c; are the integration constants, and t,, r, the
1‘2 1 g
0

initial conditions. We can check that x%*-y2>=1 is an «unstable limit
cycle» of (3.3).

where ¢ =

Example 3. The NLDE ;
x+3x —4x3+x5=0 (3.6)

has infinitely many cycles, and some closed trajectories of special type
(separatrices), but no limit cycles. We explain this statement.

The points: x=0, x=+41, x =+ V3 on the x-axis are sin-
gular points of (3.6); the points: x =0, x =+ V3 are centers, and
x =11 saddle points. [7-b]

The phase portrait of (3.6) is shown in Figure 2. There are special
solution curves from a saddle point to another one, the «separatrices»

Fig. 2.

of (3. 6), which separate the whole x, y - plane into four distinct regions
in each of which there is a continuum spectrum of cycles. To go from
one saddle point to the other, following a separatrice, theoretically
infinite time is needed, and (3. 6) has no limit cycles.

IV. SELF - EXCITED OSCILLATIONS

Self-excited (or self-sustained) oscillations are special periodic
phenomena corresponding to stable limit cycles. They do not exist in LS,
but may exist in NILS. They can be produced in NLS, where the nonli-
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nearities appear in the damping forces, without the influence of external
forces, that is in NLS of the form: x —+ e (x,X) -+ kx = 0.
In particular, the form:

x +ep(x) + kx =0 (4)

is very useful. ¢ and k are constants.

To the nonlinearity of this equation we can give another useful form.
We differentiate (4) with respect to the independent variable t then

put x =y, when (4) reduces to:

y+ew(y)y + 2y =0 (4.1)
where (y) is the derivative of ¢(x) with respect to X=y.
The above NLE can be transformed into another form where k =1,
by changing the independent variable t into a new one t, according to
t=kt, when, e.g., (4) can be written in the form :

X"+ e (x’)Fx=0 (4.2)

1 e .
where ¢,(x’) = — ¢ (kx’), and the derivatives are taken with respect to .
k2

Electrical systems involving vacuum tubes, mechanical systems of
action of solid friction, the Froude’s pendulum, and other systems, which
can be formulated as special cases of the above NLDE, can execute
selfexcited oscillations.

Rayleigh (1883) first studied this kind of oscillations in connection
with acoustical phenomena, then Van der Pol (1927) in connection with
electrical phenomena.

The Rayleigh equation is:

X+ (—a+bx})x+ kx =0 (4. 3)
which is of the form (4). The Van der Pol equation is:
y—e(l—y)y+y=0 (4.4)

wich is of the form (4.1).
The Rayleigh equation (4.3) can be reduced to the Van der Pol

equation (4.4), by changing the variables t and x in (4.3) into new va-

riables v and y, respectively, according to formulae :

3bk -

e A

t=Vkt, y= (4. 5)
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and getting & = 8

Vk

e We give some special examples.

Example 1. We take a special case of the Rayleigh equation

(4.3) with a=1, b= :—;, k =1, that is the NLDE:
” 2 1 -
x—x—l—x—{—3~x3=0. (4. 6)

The linear part of (4.6):
x—x+x=0 (4.7)
1 ..V3 . . ol
has A = 5 ok 15~ as eigenvalues, then its origin is unstable and the
solutions around the origin are spirals that wind away from the origin.
If we add to (4.7) the nonlinearity —13-};3, we have (4.6) which in
the phase plane can be written in the form :
=g gk

dy
— = ; 4.8
Ix ’ (4. 8)

| =

Applying the Liénard’s graphical method, Figure (3a), we find a
single stable limit cycle as a closed solution, Figure (3b), corresponding

to self-excited oscillations.
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Fig. 3.
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Example 2. The Van der Pol equation:
x—e(l—x)x+x=0 (4.9)
is equivalent to the equation :

A T A - (4. 10)

dx y

For ¢ =0, the general solution of (4. 10) is the family of concentric
circles with center the origin. For ¢ =1, application of isocline method
shows the limit cycle as in Figure 4, corresponding to self-excited

oscillations.

. .
les T::?/l&‘LE -\ y \
STABLE \\

LIMIT CYCLE o
N T

Fig. 4. Fig. 5.

Example 3. The equation: [2]
x+e(l—ax®+bxy)x4+x=0 (4.11)

for e =1 is equivalent to:

T — 2 4
dy - X (1 ay + by )Y (4. 12)
dx y
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of which the graphical solution, as shown in Figure b, has two limit
cycles, one unstable and the other stable, corresponding to self-excited
oscillations.

Example 4. The equation :
:‘.<+x=a1:i—|—bxi+c;<2+dx2 (4. 13)

can be produced in the theory of a common cathode generator, taking
into account the anode reaction, if the value characteristic is represented
by a quadratic polynomial. [11]

This equation in case: a=0.2, b=1, c=—1, d=c becomes:

x=—x4+024+x—x)x (4. 14)
which, in the phase plane, is equivalent to

dy _ —x+(02+x—y)y (4. 15)

dx y

3

gren -
e

\\\—// ~—(imit 17([/!

Fig. 6.

Equation (4.15) has one equilibrium point, the origin, which is
unstable, and the method of isoclines, applied to (4.15), leads to Figure 6,
where we see that a stable limit cycle exists, corresponding to self-
excited oscillations. By using a graphical method, we can check that the
shape of the limit cycle is distorted with the increase of the parameter a,
becoming more and more non-sinusoidal.
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V. THE PHENOMENA OF SUBHARMONIC RESPONSE

Subharmonic phenomena occur in some NLS but, in general, not
in LS. They appear when the systems are subjected to external periodic
forces, say sinusoidal.

If the frequency of the external force is w, the system, under the
influence of such a force, may exhibit periodic motions with frequency

w . . . -
[ where n=2,3, ..., and such motions are, by definition, «subhar-

. o . . il
monic oscillations» or simply «subharmonics» of order —, n= 2,3, ...
n

The existence of subharmonics can be found theoretically and
checked experimentally.
Mechanical, electrical, acoustical, aerodynamical phenomena, and so
on, exhibit subharmonic response. We refer some physical examples.
® The «loudspeaker» can be considered as a physical example of

. 1 . . . .
subharmonics of order = A sinusoidal current in the coil causes the

loudspeaker diaphragm to vibrate axially about a central position.
These vibrations may, under certain circumstances, be with frequency
half of that of the driving current.

® An aerodynamical model of subharmonics could be based on the
fact that cartain parts of an airplane can be excited to violent oscilla-
tions by an engine running with a frequency much larger than the
natural frequency of the oscillating parts.

e An electrical model of subharmonics might be an electrical oscilla-
tory circuit in which the nonlinear oscillation take place because of a
saturablecore inductance under the impression of an alternating electro-
motive force of sinusoidal type.

In connection with subharmonics of a nonlinear forced system,
important problems of current interest are: to find conditions for the
existence of one or several subharmonics and their appropriate order, to
calculate their amplitudes, to discuss their stability and determine their
region of stability. ‘These problems lead to restrictions of the coeffi-
cients of the system and of its nonlinearities, and to restrictions of the
amplitude and frequency of the external forces.

By the following examples we clarify some of the above statements.
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Example 1. The Linear Forced System of One Degree of
Freedom.

We consider the linear system of one degree of freedom under the
influence of an external sinusoidal force in two cases, one with constant
coefficients and the other with variable coefficients.

Case A: Linear System With Constant Coeffi-

cients. In this case we have:

x + 2rx + p* = Bcos (ot + o) (5)

where 1, p, B, o, ¢ are constants; B, » and ¢ are the amplitude, the
frequency and the phase of the external force.
We investigate the possibility of the existence of subharmonics

of this system.

The general solution of () is of the form :
x = A;eMt 4+ Aye’t 4 B, cos (ot -+ @ —39) (5.1)

where 8 is the phase shift, A; and A, are arbitrary constants, and the
amplitude B; of the last term is due to the external force.

The eigenvalues A, and A, are given by :
Ma=—r+VeP—p?=—r+iq, q=Vp*—r2. (5. 2)

The subharmonics should come from the first two terms of (5.1),
which must be periodic, then we exclude q=0, and q = imaginary,
and we accept the case of a real q, that is p®>r% then, by calcula-
ting B;, the solution (5.1) will have the form :

B cos (ot + @ — d)

9.3
V(p2 . mz)z = 412 2 ( )

x = e~ "(c;cos qt + cpsin qt) 4

with c¢;, c; arbitrary constants.

The first part of (5.3) is the «free oscillations», and the second
part the «forced oscillations» of the system (5).

The amplitudes of these two oscillations must be bounded, then
we exclude for the first term of (5.3) r<0, and for the second term
p’=0®, r=0. Also, we exclude the case r>0, because, in this case,
the free oscillations of (5.3) are damped out and only the forced oscilla-
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tions can be observed. Therefore, it remains the only case, the undamped
case, r =0, when (5.3) assumes the form :

B cos (ot 4 ¢ — )
| p? — o?|

(5. 4)

X = ¢; cos pt + cpsinpt 4

with the restriction p== o .9d in this formula is either zero (if o<p),
or 2x (if ®>p), when the «iree oscillations» are either «in phase», or
«180° out of phase» with the «forced oscillations». We can select  and p
such that ® = np, n = integer, when the free oscillations of (b.4) should

; 1
be «subharmonics of order o of the undamped system (D).

But in the actual cases no system is undamped, and we can tell
that we have «unstable subharmonics», which are not acceptable in
practice. As a result, the system (5) with constant coefficients has no

subharmonic oscillations.

Case B. Linear Systems With Variable Coef-
ficients. In this case, subharmonics may exist even in the presence
of viscous damping, but they rest on hypotheses which are not always
met exactly by reality.

The systems with coefficients varying periodically in time are of
great interest, and the external forces may depend not only on time, but
on displacement and velocity as well.

We give two physical examples.

B.1: The Problem of Transverse Vibrations of a
Rod Under the Action of a Longitudinal Pe-
riodic Force. [1]

This problem, after some hypotheses and transformations, leads to
the «Mathieu equation»

x 4+ 0*(1 —hcosvt)x = 0 (5. 5)
where
, gn'EI .
of = = EF h = Tpr <1, (5. 6)

ITAA 1976
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1 is the length of the rod, A its cross-section, y its density, EI its rigidity,
o the free frequency of (5.5), and the external force is F(t) = P cosvt.
We can calculate a solution of the equation (b. ) which is a subharmonie

of order % , of the form :
x=acos(%t+9) (5. 7)

by calculating a and 0 as appropriate functions of time.

The calculation shows that oscillations of the form (5.7) will be
automatically excited, if the parameters o, h of (5.5) and the frequency
v of the external force are restricted according to :

2m(1—2><v<2m(1+%> (5.8)

which represents a zone for the existence of such a subharmonic.
The solution (5. 7) is in its «first approximation».

The solution of (5.5) in its «second approximation» is:

x=acos<yt+9>— 0th(ﬁ——cos(?vt«}—@) (5.9)
2 v 2
8<w+ -)
2
under the restriction :
h Wy h hz) ,

We remark that  and h are taken as parameters of (5.5), and the
subharmonic of (5. 5) may be called «parametric subharmonic».

B.2. A Conical Loudspeaker Diaphragm. [7a]

The mechanism, shown in Figure 7, of which a simplified version
may be a device for a conical loudspeaker diaphragm, can execute a

. . e 1 =
parametric subharmonic oscillation of order ) of the driving force.

The mass m slides over a frictionless horizontal plane. The links
and the spring are massless. The pin-joints at O, A, B are frictionless.
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OA and AB are long enough for motion parallel to BD to be negligible
in comparison with that along the axis of the spring. The driving force
Fo=1fgcos 2vt is applied to the cross-head B. It may be resolved into

£=(fycos2 vty

il

0%’/ — /

g F=lfcos2ve
Fixed pin joint™~~~.

SO == ‘ ' 3 quide &,

Fig. @.

two components, one along AB, the other along DA. The latter is nearly
(fgcos 2vt)y and it causes m to slide along the line CDA. There are three
forces associated with m : one the inertia force mir., one the constraint
sy due to the spring, and the driving force (f,cos 2nt)y. The equation of

the motion of m is:

my + sy = (f,cos 2v)y (5. 11)
which, if o?= 2 = —fg, becomes
m s
y 4+ o(l —hcos2vt)y = 0 (5.12)

a «Mathieu equation». As we can check, this equation enhibits a para-

. . —_— i : .
metric subharmonic oscillation of order 5 Figure 7 can be considered
as a schematic plan of mechanism illustrating Mathieu equations.

We now refer to some examples of subharmonics of NLS.

Example 2. Existence of Subharmonics of NL Nondissipative

Systems.
The motion of a material point along a line is under the influence

of a nonlinear restoring force, g(x), and an external time-dependent
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force, f (t), in the absence of resistance, when the equation of its motion is:
x +g(x) = £(t) (5.13)

f(t) is periodic, f(t) =f(t 4+ T), and g(x) satisfies a Lipschitz condition.
From the theorems of existence of subharmonic of (5.13) we refer only
to the following two : [9]

1: «If f(t) is an even function, f(t) = f(—t), n a natural number,

and 1&(0)=§<(% T) =0, then (5.13) has a subharmonic of

order -1—».
n
II: «If f(t) and g(x) are odd functions, f(—t)=—1f(t), g(—x)=

= —g(x), and x(0) = x<121'1‘) = 0, then (5.13) has a sub-

: 1
harmonic of order ~n—».

Example 3. The NLDE:

¥4 oly — 2e(1 —by?Y)y = — i cos 3wt (5.14)

Vb

with NI, damping has a subharmonic of order % .

Indeed, by using the trigonometric identity :
4 cos’ot = 3 cos wt + cos 3wt
we can check that the function
— isin wt
b

satisfies (5. 14).

Example 4. A generalization of the equation (5. 14) is:

y+ oy + ¢f(y)y = A cos (nwt + ¢) (5. 15)
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with € <1. By applying the «Poincaré method» and restricting A, f(y)
and the integer n appropriately, we can find stable subharmonics of

this equation. [3]

Example 5. We consider the NLS [6a,b]

Q4 EQ 4 5,0 4+ 5 Q* + 5 Q® = Asin2t (5. 16)
coming from electrical problems. By changing the coefficients accor-
ding to:

E =8k, 1—¢& =¢c;, Cy= scy, ©C3= 8y (5.17)

the system can be written in the useful form :

Q-+ Q = &f(Q,0) + Asin2t (5. 18)
where :
£(Q, Q) = —kQ + ;0 — ¢, Q* — 3 Q° (5.19)

Case A: For ¢=0, the solution of (5.18) is:

Q = x;sint 4 Xycost — %sin 2t (5. 20)

where X, and X, are arbitrary constants. The first two terms of (5.20)

; . I :
give the «subharmonic component» of order 5 of the solution (5. 20)
with amplitude: = Vﬁf + 2.

This subharmonic is, as we know, without practical importance.

Case B: For =540, we try to establish a solution of (5. 18) of the
form (5.20), where, instead of the constants %; and X,, we calculate
appropriate functions x; = x; (g, t) and x,= xs (g, t), such that their
limits, as ¢—> 0, are the constants ¥, and %, respectively.

The calculation of the amplitude r = fo—{— x; of the subharmonic

. - . Ca—
of order 5 in the nonlinear case leads to appropriate restrictions for the
existence of a real and stable amplitude r, and for the existence of two
: 1 ; . ;
subharmonics of order 5 with two amplitudes r; and r,, which can

be calculated.
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(ev)

Fig. 8.

In Figure 8(a), the shaded regions in the <c£’ A) -plane corres-
2

ponds to a real amplitude r of subharmonics.
C1

In Figure 8(b), the shaded regions I and II in the <?, A) -plane
3

correspond to real amplitudes r; and r,, respectively, of the subharmonics.

Example 6. The forced system which is linearly damping and
has a nonlinear restoring force expressed by : [5]

y4+v =el—ky —f(y) + Asin (ot + o) (5. 21)

where e <1, f(y)/y >0, and ¢, A, k positive, can be studied by applying
the «Cartwright-Littlewood method», when important results in con-
nection with its subharmonics can be found. Some of these results are:

(a) : Subharmonics of a given order exist in certain frequency bands.

(b) : Tf, at a given frequency, several states of subharmonics are
possible, the amplitude is largest and the frequency band smallest for
the lower order of subharmonics.

(c): For a given form of the non-linearity f(y), the highest order
obtainable is a function of the ratio A [k, which also determines the
width of the frequency bands.
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We remark that the subharmonic oscillations of a NLS belong to a
general class of periodic motions characterized by the property that the
ratio of the frequencies w, (free frequency) and o (frequency of the

- : . w n
external force) is a rational number, that is: a;" = ;3, where ny and n

are mutually prime integers.
We may have the following cases :
(a) If ny=n =1, then: w, = ®: harmonic oscillation of the system

(b) If n =1, then: wy= nyw: harmonic oscillation of order n,

(c) It ny=1, then: w,= 2’ : subharmonic oscillation of order 71]«

(d) If 1<ny<n, then: w; = no(%:): n, multiple of subharmonic

of order i
n

VI. AMPLITUDE AND FREQUENCY OF PERIODIC SOLUTIONS
OF FREE LINEAR AND NON-LINEAR SYSTEMS

The periodic solutions of free (unforced) LS have amplitude inde-
pendent of the frequency, and the frequency is the same for all trajecto-
ries. On the coatrary, in the periodic solutions of free NLS the ampli-
tude depends on the frequency, and the frequency changes from trajectory
to trajectory. We see examples.

Example 1. The free LS:
x 4 2rx 4 p’x = 0 (6)
has as general oscillatory solution the function :
X = e~ (c;cos Bt + cysinBt), B = Vp?—r12 (6.1)

where c; and c, arbitrary constants.

(a): In the damped case, r=£0, the factor e~ of (6.1), which
characterizes the amplitude of the oscillatory motion (6. 1), either tends
to infinity (for r<0), or tends to zero (for r>0) as r—>o, and the
motion is not periodic.
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(b): In the undamped case, r =0, (6.1) becomes:
X = ¢y cos pt + cysinpt (6.2)

which is a family of periodic motions with the same frequency p, but
amplitude c=ch+c§ calculated from the initial conditions. ‘These
amplitudes are independent of the frequency.

Example 2. The free NLS : [10a]
X 4+ p*x 4+ bx3 =0 (6. 3)

can be solved exactly, and the period of the closed trajectories can be
calculated. (6.3) is equivalent to:

x=vy, y=—(p*x+4bx?
then to:
2 3
s . Dt (6. 4)
dx y

of which the solution is the family of the closed trajectories :
2 22 b 4 ? R
y® 4+ p*x? -+ gk = (6. D)

c is the integration constant.

For the period T of the trajectories (6.5), we insert y = x and we
take into account the symmetry of these trajectories, when:

*1*:4f o T (6. 6)

v Vc_<pzx2+ §X4>

Transforming according to:
x = Asinb (6.7)
we can find :
/2 d
T = 4V2 f k . 6.8
V2p2+ bA% 4 bAZsin®6 (6.8)
0

As a result, the period 'T', or the frequency (T'~!), corresponding to
the periodic motion on a trajectory is dependent on the amplitude of this
motion, and the period, or the frequency, changes from trajectory to
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trajectory. In the special case b =0 the system (6.3) becomes linear,
and its period, which comes from (6.8) for b=0, is a constant for all

trajectories.
VII. THE RESONANCE PHENOMENA

The resonance phenomena occur in forced LS and NLS, in case
the free frequency of the system is equal or very close to the frequency

of the external force.
The damping in a LS and the nonlinearities in a NLS play a very

important role in the resonance phenomena.
By the following examples is shown the influence of the damping

and of the nonlinearities to the resonance phenomena.

Example 1. The general oscillatory solution of a damped
forced LS:

x 4 2rx + p2x = acoswt (7)
is the function:
X = e~ "(c;cos qt + cpsinqt) 4 A cos (wt -+ @) (7. 1)
where :
q=Vp*—r®, A= . (7.2)

V(pz—w2)2+4r2w2
c; and ¢, in (7.1) are arbitrary constants.
The system (7) is in «resonance» with the external force, if w = p,
and «near resonance» is w —p < 1.

We distinguish two cases:
(a): If (7) is «undamped», r =0, then the solution (7.1) becomes :

X = ¢;co8 pt + cypsin pt 62—372‘ cos (ot - @). (7. 3)

If, in (7.3), o is equal or close to p, the amplitude of the term
of forced oscillations of (7.3) becomes infinite or very large, when the
undamped system (7) is in «resonance» or «near resonance» with the
external force.

(b): If (7) is positively damped, r>0, the free oscillations of (7.1)
are oscillatory motions but not periodic, since for t—>, are damped
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out, when in the case of «resonance», p = w, the solution (7.1) becomes:
X = -—— coswt. (7. 4)
20t

This is a periodic motion with finite amplitude, which becomes
very large if the damping coefficient r becomes very small.

By the above example is shown that the damping in LS can prevent
resonance, and that a weak damping force can be capable of sustaining

oscillations of large amplitude.

Example 2. Consider the LS and NLS:
il

(a): x+x=0, (b): x4+ x -+ €x3=0 (7. B)
of which the general solutions are :
(a): x?4 y?=c? (b): x*4y*4 112 B = (7.6)

All solutions of the LS are periodic with the same period.

But the period of the solutions of the NL.S changes from trajectory
to trajectory, and the period varies with amplitude. A periodic distur-
bance in the NLS will become out of phase with the free motion, and
the forcing function should be an obstacle to increasing amplitude. The
period varies with amplitude and non periodic solutions are possible.

As a result, the nonlinearity can prevent resonance, even in the
absence of damping.

Due to the nonlinearity, the frequency will be changed, then reso-
nance will be stopped.

The nonlinear terms exert, in general, a stabilizing influence until
the motion has passed.

«Resonance phenomena» are in many cases unavoidable. They are
dangerous, but sometimes controllable, and, although uncomfortable,
they are not in all cases undesirable.

We refer to some physical examples related to resonance.

e If an elastic machine part vibrates in resonance with a sinusoidal
force, it may become the source of vibrations with large amplitudes,
which, in turn, may produce excessive stresses and lead to possible
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failure. It is, then, vital to design machine parts, or other engineering
structures, in such a way as to avoid resonance with periodic forces.

e Tacoma Narrows bridge offers an example of a big failure in engi-
neering history, due to resonance. This suspension bridge, just after its
opening, started to exhibit a marked flexibility and a series of torsicnal
oscillations, the amplitude of which steadily increased until the convo-
lutions tore several suspenders loose, and the span of the bridge broke
up (November 7, 1940) four months after its building. The wind created
aerodynamical forces, which, at the time, were insufficiently understood.

@ When a group of soldiers marches in step over a suspension bridge,
the feet of the group exert a periodic force on the road bed. If the period
of marching is equal to the natural period of the bridge resonance occurs
and the sustained bridge oscillations may become dangerous.

® Resonance is sometimes not undesirable. One can in fact utilize it
to produce large vibrations by means of small forces. E.g., the vibra-
tions of a string can be sustained by means of an electro-magnet which

is activated from a weak alternating current.

VIII. JUMP, OR HYSTERESIS, PHENOMENA

Jump discontinuities are phenomena in damped forced NLS and
not of LS. They are found and explained mathematically and checked
experimentally, especially in electrical and mechanical systems.

There are frequency regions where the amplitude of the oscilla-
tions jumps discontinuously and, in these regions, the oscillations have
a kind of inmstability.

Let us take, as an example, the system : [10b]

x 4+ cx 4 p2 + bx3 = F cos (ot + @) (8)

The investigation of a periodic solution of this equation of the
form: x = Acoswt loads to the formula :

{(pz——uF)A-l—%bA‘”‘F-{—cA%ﬁ:FZ (8. 1)

where we consider A versus o, p and c¢ constants, and F as a parameter.
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In the undamped case, ¢ = 0, Figure 9 shows the amplitude curves
which are curves without closed branches.
In the damped case, ¢ > 0, Figure 10 shows these curves having a

single branch for each value of F.
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Fig. 10.

Suppose we keep I = constant and vary o from large values to
smaller values, starting, say, at point 1, Figure 11(a). As o decreases,
A increases slowly until point 3 (tangent point to the curve), when a
further decrease of o causes a jump up to the amplitude from point 3
to point 5 of the curve, and after that the amplitude decreases with .
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If we start increasing o from a value corresponding to point 6,
the amplitude follows the portion 6 —> 5 — 4 of the curve, when, if 4 is
the tangent point to the curve, the amplitude jumps down to point 2,
and after that decreases slowly with increasing .

W IAIT

Fig. 11,

The same phenomenon occurs in Figure 11(b), but in the reverse
direction. T'he above is the jump, a hysteresis, phenomenon, corresponding
to an interval of w, in which the oscillations are unstable.

The portion 3 —> 4 of the curve is a «dead portion».

IX. COMBINATION FREQUENCIES

Helmholtz in his acoustical studies, and Poincaré in his studies of
NLDE established that, in addition to certain fundamental frequencies
w; and w, in a NLS, there exist solutions of the same DE with the fre-
quencies: ® = mw; + nw,, where m and n are integers.

These are called «combination frequencies», or «combination tones»
of the system, and the phenomena of combination frequencies are phe-
nomena of NLS.

Example 1. The oscillations of the LS :
3 ex+x = Fycos ot + Facos met = H (t) 9)
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where w;s=wy5<1, are superposition of a damped free oscillation and
a forced oscillation, which, in turn, is a superposition of the fundamental
oscillations due to each of the two separate tones of the excitation H(t)
individually. That is essentially the oscillations of the LS (9) are simply
a superposition of the two harmonies with frequencies o, and w,.

Example 2. Consider now the NLS : [10c]

x4 cox + x —bx® = H(t). (9.1)
We have two cases:
Case a: %1 = rational number. In this case the excitation H (t)
2

is a periodic function of time, and (9.1) has periodic solutions of
various kinds.
® . . . .
Case b: ml = irrational number. In this case H(t) is an almost
2

T ; ; ; ® 4
periodic function of time, and since uil =k g, where p and q are
2

mutually prime integers, we will have solutions with frequency :
o = qw; — pwy = 0.

In this case, by using approximate methods for calculation of
approximations of the solutions of (9.1), we find that these approxi-
mations of the solutions contain terms with denominators powers of
(+ mo; + nw,), where m and n are integers.

But, by virtue of the «Kronecker theorem» it is known that the
expressions (+ mw; + nw,) are arbitrarily close to zero for infinitely
many different integers m and n, when the approximations of the solu-
tions of (9. 1) are divergent, because of the «difficulty of small divisors»,
which was first pointed out by Poincaré in discussing perturbations
methods with problems in Celestial Mechanics.

The «difficulty of small divisors» can be circumvented in some
cases if we use viscous damping in the system.

In case the excitation of the NLS has a single frequency, which is
an irrational multiple of the free frequency of the system, we have the
same situation as above.
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RESULTS AND REMARKS

@ The linear and nonlinear systems have striking properties which
characterize them. Some properties are properties of LS and some others
only of NLS.

e The principle of superposition of the solutions, the global property,
the independence of amplitude and frequency of an oscillation, char-
acterize LS.

The existence of limit cycles, the change of frequency from tra-
jectory to trajectory, the jump discontinuities of the amplitude of oscil-
lations, the development of stable self-excited oscillations, the pheno-
menon of combination tones, characterize NLS.

The resonance phenomena are related to LS as well as to NLS.
The damping in LS can prevent resonance, and the nomnlinearities in
NLS can stop resonance, and by a proper selection of nonlinearities the
system can become stabilized.

® The reduction of a NLS to a LS implies that some properties
of NLS will be lost, and, therefore, if a problem in connection with the
NLS is related to a property which will be lost by linearization, then
the linearization as a method to solve the problem is not applicable.

IERIARYILE

Tao yoouwna (I'E) nal w1 - yoaupuwa (MI'E) ovetrjuara #ovv idtdtmrag
al 6motat dAlar uev yagaxtmotCovy e 'S dAkow ta MI'Z.

@ Eic ta 'S 1 yevu Moig ddvatar va 809 dg youuudg cuvdvaonoc peot-
#®v anhdv Aicewv, xol al otadegal Oloxhnedosws eloéoyovrol &l TG Yevirdc
Moeig yoapuwrds. Eig ta MI'Y 1) dév Omdoyovv yevixai Adoeig, #, &av bmdoyouy,
#yovv molUmhoxov poppnv, 6mov ai otadtepal eloéoyovrar &v yével ui) - youuuindc.

e Eic ta I'S al Moeg &xovv 6hwxdv yagaxtijoa, évd elg ta MI'E #jouv
TOTKOV Y OQOXTTIOW.

e Eic 10 'S 10 mhdrog meoodidv mvioemv givar aveEdotmtov tiig cuyvitn-
10g, nal elg Ev ovveygs medlov meELodx®dv uvijoewv ol teoylal AvticTolyolv eig
v admy ovyvétmra. Todvavtiov, €lg ta MI'E 10 mhdtog 2Eaptdrar dmd TV

ovyvétnta, xal 1 cvyvétng Grldler Grd Tooyidg el Tooyidy.
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® ‘H Unagks dvouahidv &ig 1o mhdry meoodxdv wnvioewv cvvagriost Tiig
ovyvotnrog, eivar goawduevoy v MI'S, xal towoltov gawvduevov dtv Hrdoyet
3 \
glg va I'E.

® “H Unagtic uepnovouévov aepodindv xvioemv (limit cycles), dmwg xal
«cbotad®dy talavidoswv adroavamtvooouévovs yapaxtmoiler ta MI'E, xai
toladto Qawdpeva d¢v volotavial gic o I'S.

® To gawvdpevov tob «ouvdvacuod cvyvotritmv» (combination frequencies)
elvar pawvdpevov tdv MI'S xai dy v ['S.

® Al duvduerg «damping» eig ta 'S ddvaviar va gumodisovy qawvdpeva
«resonance», &v@ eic & MI'S al un - yoauuxdnreg ddvavrar va yonoiuomoin-

dolv O eborddeiav Evavil «resonance».
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*

0 Anadnuaixde % Twdvwng EavBdung, magovoidlmv v Gvotéen ava-
xolvowouy, elme to €EfG ¢

Eig tiv magoboav Gvaxoivwoty 6 x. Mdyeigog UEAETE TG YUQUXTIOLOTIAAG
éTNTag TOV YOUUUKDY %al Ul YQUUMADY ovotnudtov. ‘H diegevvnog atty
v Odfynoev elg T £Efig yevird ovumepdoparta :

1. Eic & yoauuwwd ovoriuara 1 YEVIx Moig ddvatar va elvar €vag
yoapuuxds cuvduaouds peQundV ATAdY Moswv, 6mov ai otadegai GhoxAnodoemg
elofoyovran elg Tag yevirag Avoelg yQaumix®s. *Avoidétoe elg 10w yooupLxd
ovotiuata 7| dtv dmdoyovv yevixai Aoeg | &av Yrdoyovv Fygovv mohvmhoxnov
woo@ijv, ai 8¢ oradeoai elofoyovral wi yoaupunde.

2. Bic ta yoaumund ocvotiipate 10 mhdrog TV EQLOdK®Y nvijoewy elvat
aveEdotnrov Tilg ovyvétnrog, al tooyial 8¢, eig Ev ouveygs medlov meQLodindv xi-
vijoemy, GvTioTooby el THY adtiy ovgvémra. "Avidétog el o uh yoauuxd
ovothuata o mhdrog dEaprdtal G4mO THY ovyvétta, 7 6molo GAAdCel Gmo teo-
Yidg €l TEOYLAY.

3. ‘H tmagtic avopahdv el 1o mhdrn meouodixdy AVYOEOV  GUVAQTY|OEL
tiig ovyvérmrog magatnoeital uévov eig Ta ul yooumxd cvotipata, oddérmg de
elg TO YooUWXG TOLODTAL.

4. ‘H fmogklc uenovouévov meorodmdv wvijcemv xodmg #al evotaddv
Lo haVTHOEDY GDTONVATTUGCOUEVOV ETVOL YOQUXTNOLOTIXOY TV 1} YOAMUMKDY 0=
stqudtaov, dév magatneeitat de TO pavéuevov toito elg Td YoaUUIKG oVoTIUATA.

Téhog t0 @awduevov tob «Svvdvacuod GUYYOTHTOV» TAQUTNQETTAL HOVOV

el TO UM Yooumukd GUOTHUATA.
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