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MAOHMATIKA.— The general solutions of nonlinear differential
equations as functions of their arbitrary constants, by Deme-

trios G. Magiros*. *Avexovddn Ono tob *Axadnuaixod x. "Iw. Zavddrn.

INTRODUCTION

One of the major difficulties encountered in the general solutions
of nonlinear differential equations, in contrast to the solutions of linear
ones, is the manner in which the arbitrary constants enter these solu-
tions. In this paper information is given and results are found in con-
nection with this subject.

In nonlinear DE, where the nonlinearity character is an essential
factor, we have not, according to the present status, much information
concerning the general solutions of these DE, as well as the manner in
which the arbitrary constants enter to these solutions.

Given such a DE, the first subject for its solution is to attempt to
find a general solution expressed in terms of the classical functions.
To do this one must discover transformations, which may reduce the DE
to some types that are known to have solutions of the desired kind, but
this is, in general, either difficult or impossible.

It is customary to regard a linear DE as solved, if its solution can
be reduced to the quadrature of a known function even though the
quadrature can not be expressed in terms of classical functions.

In the same sense, one may regard a nonlinear DE as solved, if it
can be reduced to the solution of a linear DE, even though the solution
is not explicitly reducible to the classical functions.

In many cases of the nonlinear DE the classical functions are
inadequate to express the solutions. Numerous nonclassical functions
have been defined and partially explored in various ways recently, so
there exists today an impressible collection of them from which one
attempts to construct the general solutions of nonlinear DE.

The arbitrary constants enter the general solutions of nonlinear DE
either «linearly» in a few cases, or «rationally linearly» in some other
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cases. Nevertheless, in the majority of the cases, the arbitrary constants
enter the general solutions in a «complicated nonlinear way», which
characterizes the nature of the general solutions and their correspond-
ing DE.

The singularities, especially the essential singularities, appearing
in the general solutions, make these solutions, as well as the manner in
which the arbitrary constants enter them, very complicated.

I. GENERAL SOLUTIONS AS LINEAR FUNCTIONS
OF THEIR ARBITRARY CONSTANTS

In a linear DE, the general solution is a linear combination of the
fundamental set of solutions, and this general solution contains the
arbitrary constants linearly. Such a general solution interprets the «prin-
ciple of superposition», which holds only in linear DE.

As an example, we take the «Bessel DE» :

2y 4 xy 4+ (x*—n?)y =0
of which the general solution is of the form:
y = ¢1Ju(x) 4 c2¥u(x)
where c¢;, c, are the two arbitrary constants, and J,(x), Y.(x) the
«Bessel functions» of the first and second kind, respectively, which are
«special functions» particular solutions of the DE.

We remark that the principle of superposition is sometimes diffi-
cult to apply, as, e.g. the general solution of the Mathieu equation :

y'+ (a+bcos2x)y =0

is not known containing two arbitrary constants in the above way [2].
In the following we find classes of nonlinear DE of which the
general solutions are linear functions of their arbitrary constants.
Some special methods are applied, illustrated by proper examples.

I.1. The Factorization Method.

By applying the factorization method to a nonlinear DE, if this
method is applicable, one can have several general solutions of the DE,
which contain the arbitrary constants linearly.
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A general example is the first order DE: F(x,y,y)=0 in case
it is a polynomial for y’ of order m. In this case, one can write:
F(x,y,y’) =y™+ Pix,y) - y™ 4. .4 Pu_i(x,¥) - '+ Pu(x, y) = 0. (a. 1)

This DE can be solved under the restriction Fy (x,y,y’) % 0, and
ify)', ..., v, are the m simple roots, one can get F in the product form:

F=[y/ —pi(x,9)] [y —pelx,9)] ... [y, — P (X, 9)] =0, (a.2)
which is equivalent to the m DE:
vi'=p(x,9), v =palx,y), ..., V,=Pylx,y) (a.3)
Integrating, the m general solutions of (a.1) are:
@, (x,y,¢) =0, @,(x,y,¢)=0, ..., @,(x,y,cm)=0. (a.4)

There are forms of the functions p, in (a.3) which lead to functions
@, as linear functions of the arbitrary constants; for instance, in the
cases where DE (a. 3) are with separable variables, or they are exact DE,
or p, are homogeneous functions of, say, degree n, etc.

Example 1: y2+y (x%y — xy) — x3y2 = 0. (1.1)

The factorization gives: (y'— xy)- (y'-+x%) =0, when the two distinct
general solutions of (1. 1), containing the arbitrary constants linearly, are:

y =, ey = cpex'I3, (1.2)

Example 2: x3y"y""'+ x%""2—2xy’y"’+2yy" = 0. (2.1)

The factorization gives: y”’(x3y’""'-+ x%y"'— 2xy’-+ 2y) = 0, when the two
general solutions of (2.1) are:

(@) y=a;x +a,, (b) y=cix+ cox® 4 cgx'. (2.2)

These two general solutions contain the family of straight lines through

the origin (a;=cy =c3=0, a; = ¢;) as a «common part».

Example 3: vy y2y" 'y =0, (3.1)

y’"" is a common factor of the terms, then y’”’(y?+4y*-+41)=0, and
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since y24 y24+1s£0, the DE (3.1) is equivalent to y”’’=0, of which
the general solution is:

= ¢; x>+ cpx + c3, (3.2)
which consists of two different families of curves, the parabolas (c; 5~=0)
and the straight lines (c; = 0).

2 2 2 2
l . 3 ___ y —Xx "8 . 3! .____y =& =, %
Example 4: y . y vy + oy 0 (4.1)
Factorizing, one can get:
2 2
2_ A ot Sam W 4, 2
" — 1 (y Sy ) 0 4.2)
which is equivalent to:
: = L 4.3
(@) v'=+1, (b)Y——‘?;(T (4.3)
The first of (4.3) gives two general solutions of (4.1):
(@) vy=x+4¢, (b) y=—x+c,. (4. 4)

The second DE of (4.3) has its right hand member as a homogeneous

function of second degree, and can be written as:

co xP—1
YT Ty (4.5)

By using the transformation y = xu, the DE (4.5) can be solved and its

general solution can be found to be:
x4 y2—cx = 0. (4. 6)

The three functions (4.4,a,b) and (4.6) are the three general solutions
of the DE (4.1), containing the arbitrary constants linearly.

1. 2. The Method of Restricting Quantities of the DE.

By restricting quantities of the DE one may have several general
solutions of the DE containing the arbitrary constants linearly. We give

two examples.

Example 5 : vy’  (14+y?% —2yy”’=0. (65.1)
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We restrict the unknown function y of (5.1) as follows:
(a): If y is such that y”’=0, which implies y’’=0, then the general
solution of (5.1) is:

y = a;x + a,. 5:2)

(b): If y is such that y’’s~0, then one can integrate (5. 1) exactly, and

its new general solution is:
4Vt eaxtayte=0 (5.3)
Both functions (5 2) and (5. 3) are distinct general solutions of (5. 1) and
contain the arbitrary constants linearly.

Example 6 : vy 4 %y' + y* = 0. (6.1)

This is the famous Emden equation, coming from his investigation on
basic problems of astrophysics. The solutions of this DE in a closed

form are [1]:

0 ve—g B2 X
fa) n=0: y=a - 5
sinx cos

) n=1: y=c=—=+c—> (6.2)

() n=5: —<———3a )’
) n=58: y= )

a, a;, ag, C;, C; are arbitrary constants. The first two functions are the
only known general solutions of the corresponding linear DE of (6.1)
containing the arbitrary constants lineatly. The third function of (6. 2),
containing one arbitrary constant nonlinearly, is a «part» of the unknown
general solution of (6.1) in case n = 5.

On the occasion of this DE, we remark that any attempt to find
the general solutions of (6.1) for other values of n will be governed
rather by a theoretical curiosity than by its usefulness, since, even if
we know it, it has, according to Emden, no physical meaning in the
Emden problems of astrophysics. Emden and his followers iu astro-
physics found a solution of (6.1) in the form of a Taylor series, which
interprets the reality very adequately.
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I.3. A class of nonlinear DE with general solutions containing
the arbitrary constants linearly.

We can find a class of nonlinear DE of which the general solution

contains the arbitrary constants linearly.

Starting from the simple primitive:
yvP=4x; y=+#0, x>0

by differentiation one gets the DE: yy"—2 =0 of which the general
solution is y?=4x 4 ¢;. Another differentiation gives: yy '+ y2=0
with general solution: y*=4x + ¢;x 4 c;. Continuing the differentia-
tion up, say, to the order n, a nonlinear DE of order n results of which

the general solution is:

vi=dx +cyx" 14+ ... + co1X + Cn,

where the arbitrary constants ¢;, ..., c. enter linearly.
Generalizing the above, one can see that a nonlinear DE of order n:

Fly, v - oo 999 = @4a), (7.1)
where :
e dn - dn .
} == dx" f(Y)Y q)(x) - an Cp(x) (7 2)

has as general solution the function :

f(y) = @(x)+cyx" '+ ...+ cpax4cn. (7.3)

We remark that the «principle of superposition» may be applicable
to some nonlinear DE of which the general solutions are linear functions

of the arbitrary coustants, and this is an important problem.

II. GENERAL SOLUTIONS AS RATIONALLY LINEAR FUNCTIONS
OF THE ARBITRARY CONSTANTS

We distinguish a class of nonlinear DE of which the general
solutions are rationally linear functions of the arbitrary constants, that
is the general solutions are ratios of functions, where the arbitrary

constants enter linearly in the numerators and denominators.
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This class of nonlinear DE is the class of «Riccati equations of

any order»,

II. 1. Let us start from the simple case:

- a;+cb,
= ____32+Cb2 (8.1)

where ¢ is the arbitrary constant, and a;, as, by, by functions of x.
Eliminating ¢ between (8. 1) and its derivative, the resulting DE
has (8. 1) as a general solution. The differentiation gives:

7 ay 4 ey’ — y(ay” + cby’)
= & oh, . (8.2)

From (8.1) and (8.2) one can get, respectively:

a;— yag a; — ya, —y'a,
C = — g C= — 7 - (8 2
by —ybs’ b; — yby'— y’be )

and equating these values of c, one has:
(bya, — a;by)y" 4 (2 by — a; by’ + biag’ — by’ a)y -+
4+ (agby” — ay’ by) y* = a,"b; — a; by,
which is of the form:

y' = Ao(x) + A1 (x)y + As(x)y? (8.3)
where :

Ag == (31) b1 == & b]_’) / D, A1 = (31 bzl o al' bz + bl' g — b1 32') / D

8.4
A2=(a2'b2——a2b2')/D, D "——‘blag—albg%o. ( )

The DE (8.3) is the «Riccati DE of order first», and the primitive
(8.1) is its general solution, which contains the arbitrary constant c
rationally linearly. We remark that the transformation:

—_— u'
y il A3u )

(8.5)

applied to (8.3), leads to a linear DE of order two in u, when the DE
(8.3) can be regarded as a solved DE.
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As a simple example of the above is the DE: y'= —2xy -+ xy?
which is of the form (8.3), and which has as a general solution the
function: y = 2/ (1 + cex’) of the form (8.1).

II. 2. A natural generalization of (8. 1) is the function:

v+ ...+ cava
8.6
aw;+ ...+ cawy ——

y:

where c; are the arbitrary constants, and v; and w; arbitrary functions
of x. This generalization was introduced by E. Vessiot (1895) and
G. Wallenberg (1899) [1]. The elimination of c; gives a nonlinear DE of
order n, called a «Riccati DE of order n», of which (8.6) is its general
solution.

By a proper transformation, the solution (8. 6) of the Riccati DE of
order n can be expressed in terms of the solutions of a linear DE of
order (n - 1), which corresponds to this Riccati DE.

The function (8.6) in case all of w; are zero, except one of them,

say w, %0, becomes :

= Vi - Vin—1 Vn
P— — o —_— 8.1
¥ €1 ¥, + + i Vo e Wn ( )
which contains the arbitrary constants & =(ci/c,), i=1, ..., (n—1)

linearly, and it is the general solution of a linear DE of order (n—1).

The polynomial DE :
V' = Ao(x) + Ai(x)y + ... + Aun(x)y", (8.8)

which is a natural generalization of the Riccati DE (8. 3), in case all of
A’s are constants, can be integrated exactly and its general solution

contains the arbitrary constant linearly.

III. THE GENERAL CASE OF THE GENERAL SOLUTIONS

In the general case of nonlinear DE the arbitrary constants enter
into their general solutions in a «complicated nonlinear way», which
characterizes the nature of the general solutions and their correspond-
ing DE.
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The singularities appearing in the general solutions make these
solutions, as well as the manner in which the arbitrary constants enter
them, very complicated.

An investigation on this line of problems is of theoretical and
practical interest.

The writer has arrived at some results on these problems, but he
considers these results as not yet sufficiently decisive to be communicated.

Il EP] AvH- B IE

Eic v mapotoay goyaciav éosvvatar 6 todmog peE tov 6motov ai adVaige-
tou otadegal elofoyovral &g TG YeEVixdg AUGElS TMOV U1 YOUUMIXDY OLopoQuxdv
gElodoewy.

Al p1) yoappuwal AE ddvavrol va vmaydodv elg toelc xatnyoplag.

‘H mowtn dmotedeltoan amo tag xhdoeig tov AE tdv 6molov al yevixal
Moeig meguéyovy tog addalgétovg otateQag «yoauuxme».

‘H devtéoa meoiéyer tag AE eig tdv 6molwv tde yevixag Ao al avdai-
0€TOL 0TaUEQL VTELOEQYOVTUL «QNTMS - YOUUUKDG?.

‘H toltn mepiéyer 6hag tag drhag AE eic t@v 6molwv tag yevixag Avoeig al
avdaiperor oradegal UmeoéQyovral #atd «moAUmAoxov W) yoauuLxOv TEOTOV>.

‘H diegedvnoig t@v ouvInxdv, 1m0 tag 6motag 1) «doy) thg émimocécews»
(principle of superposition) t@v AMoewv tdv un yoouuxdv AE ddvoatar v
gpaouoodiy, &va onuavtixov mwedPAnua, Omdyetar elg TV mEMOTNY ®xaTNyO0QLAY.

‘H devtéoa xatnyooia tdv AE dvagéoetar eig tag yevinag AMoeig tdv £Ei-

ohoewy tob Riccati olacdimore tdfemc.
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